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Resumo

“Em 1961, ano em que se constituiu a Sociedade Internacional de Estereologia,

deu-se a seguinte definição: A Estereologia é um conjunto de métodos para exploração

do espaço tridimensional a partir do conhecimento de seções bidimensionais e projeções

sobre planos. Ou seja, trata-se da exploração do espaço a partir do plano.” (cf. [1],

p.1).

O inı́cio do desenvolvimento da estereologia e áreas da matemática associadas e

ela deu-se com o desenvolvimento da probabilidade geométrica e da geometria in-

tegral. Ambas as áreas são produtos da solução do problema da agulha de Buffon.

“Georges-Louis Leclerc, Conde de Buffon (1707–1788), é famoso pela seguinte “ex-

periência”: Suponhamos que estamos numa sala cujo chão é constituı́do por tábuas

paralelas. Designemos a distância entre as tábuas por a. Tomemos uma agulha, ou

um objeto semelhante, de comprimento 2.r menor do que a. Esta condição asse-

gura que, se deixarmos cair a agulha no chão, ela atravessará quando muito uma

linha que divide tábuas diferentes. A probabilidade de que esse acontecimento

ocorra (isto é, que a agulha, ao cair no chão, não fique totalmente contida no in-

terior de uma única tábua) é então P = 4.r
π.a . Esta fórmula contém a constante π –

proporcionando-nos, portanto, a possibilidade de calcular esta constante por via

“experimental”. [...]”(cf. [2], p.124-125).

Para podermos estudar as bases da teoria estereológica dividimos o projeto em três

partes de estudo: os conjuntos de faixas no plano, o grupo de movimentos no plano

e a densidade cinemática desses movimentos.

Palavras Chaves: densidade, conjuntos convexos, estereologia, geometria integral
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1 Introdução

“A Estereologia é geralmente considerada como a metodologia destinada à estimação

de parâmetros geométricos de estruturas espaciais, a partir da informação pro-

porcionada mediante uma amostra geométrica adequada. Trata-se, portanto, de

uma ciência que combina resultados teóricos de Geometria Integral, Probabilidade

Geométrica e Estatı́stica. Os resultados obtidos em Estereologia, até aqueles mais

teóricos, inspiram-se em problemas levantados em outras ciências, problemas como

a estimação da proporção da quantidade de material em uma rocha, o número de

neurônios em uma região cerebral ou o comprimento dos dendritos neurais. Uma

vez formulado o problema na linguagem matemática adequada, trata-se de uma

submersão do problema na Geometria Integral para obter-se a fórmula apropriada

que nos leve ao parâmetro de interesse”(cf. [1], p.2).

Probabilidade, geometria, medida e grupos formam as bases da Geometria Inte-

gral, cujos primeiros resultados foram obtidos aos anos de 1935-1939 por W. Blas-

chke e seu grupo de estudos na Universidade de Hamburgo. Outra área de grande

importância para a matemática é a probabilidade geométrica, seu desenvolvimentoo

histórico pode ser visto da seguinte maneira: “[...] o problema da agulha de Buffon

tem uma extraordinária importância histórica: foi o primeiro problema de um novo

território, a Teoria da Probabilidade Geométrica, e nesse sentido rasgou horizontes

para novas ideias matemáticas, que ainda hoje frutificam.”(cf. [2], p.131).

Um dos grandes dilemas histórico sobre a Teoria da Probabilidade Geométrica con-

siste no paradigma: “Terá Buffon realmente lançado agulhas?”. “Em notável contraste

com o registo histórico, existe na comunidade matemática uma impressão genera-

lizada de que Buffon teria não apenas considerado a possibilidade de determinar

uma aproximação ao valor de π por meio de uma “experiência” como, de fato, a te-

ria mesmo chegado a realizar. [...] Muitos outros livros de História da Probabilidade

são omissos sobre a ligação de Buffon à aproximação experimental de π, deixando a

questão totalmente em aberto.”(cf. [2], p.129).

Atualmente, resolver este e outros problema utilizando ferramentas da Geometria

Integral, por exemplo, é o cerne de uma pesquisa basica e é sobre isso este relatório.
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2 Objetivos

2.1 Objetivos Gerais

• Desenvolver uma rotina de estudo individual.

• Aprimorar o raciocı́nio lógico-matemático.

• Aprender a isolar um problema em sua essência matemática para então po-

der associar problemas vindos de diferentes áreas e encontrar soluções mais

simples e mais gerais para os mesmos.

• Familiarizar-se com a pesquisa em Matemática, aprender a questionar e buscar

soluções novas e/ou já existentes de problemas.

• Estimular o rigor matemático como uma forma natural de formular e pensar

sobre problemas matemáticos.

2.2 Objetivos Especı́ficos

• Aprender importantes conceitos e propriedades da área da matemática cha-

mada Geometria Integral.

• Aplicar resultados obtidos nesta área a outras áreas da Matemática. Este pro-

jeto utilizou fortemente conceitos das área de formas diferenciais e geometria

plana.

• Aprender importantes resultados da matemática, como o Teorema da agulha

de Buffon, fórmulas integrais para densidade cinemática.
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3 Métodos

A metodologia de trabalho nesta IC deu-se por meio de apresentações semanais de

alguns capı́tulos do livro [3], considerado uma grande referência da área.

Além disso, foram resolvidos diversos exercı́cios a respeito dos temas estudados.

6



4 Resultados

4.1 Conjuntos de faixas no plano

No que segue desta seção,vamos fazer algumas definições e provar algumas proposições

que serão necessárias para a resolução do problema da agulha de Buffon, que será

exibida na conclusão deste relatório.

Definição 4.1 Uma faixa B de largura a no plano consiste em uma parte fechada do
plano entre duas retas paralelas cuja distância entre uma e outra é a.

Definição 4.2 A posição de uma faixa B será determinada pela posição da reta que equi-
dista das retas paralelas da fronteira da faixa.

Figura 4.1: Posição de uma Faixa

Definição 4.3 A densidade de um conjunto de faixas B(p,φ) no plano é:

dB = dp∧ dφ,

onde p e φ denotam as coordenadas da reta central G da faixa B.
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4 Resultados

Proposição 4.4 A medida de um conjunto de faixas B no plano sobre um conjunto con-
vexo fechado K que intercepa B é

m (B;B∩K , ∅) =
∫
B∩K,∅

dB = L+π.a,

onde L é o perı́metro de K e a a largura de B.

Demonstração: Denotamos por G a reta central de B, assim:∫
B∩K,∅

dB =
∫
G∩Ka/2,∅

dp∧ dφ = L+ 2.π.
a
2

= L+π.a

�

Proposição 4.5 Tome K1 um conjunto convexo contido em um outro conjunto convexo
K fechado. A probabilidade que uma faixa B de largura a intersecte K1, dado que ela
intersecta K , é de:

p =
L1 +π.a
L+π.a

Demonstração: Por definição de probabilidade:

p =
m(B;K1 ∩B , ∅)
m(B;K ∩B , ∅)

=
L1 +π.a
L+π.a

�

4.2 O grupo de movimentos no plano: densidade

cinemática

Para esta seção vamos fazer algumas definições e provar algumas proposições que

serão necessárias para a resolução de um problema que será proposto na conclusão

deste relatório.

Definição 4.6 Assuma o plano euclidiano referenciado por um sistema retangular de
coordenadas cartesianas. Definimos um movimento como a transformação:

u : P (x,y)→ P ′(x′, y′)
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4 Resultados

Que será representado pelas equações:

u

 x′ = x.cos(φ)− y.sin(φ) + a

y′ = x.sin(φ) + y.cos(φ) + b

onde a,b,φ são parâmetros, de modo que −∞ < a,b <∞ e 0 ≤ φ ≤ 2.π.

Definição 4.7 Dizemos que K e K ′ são congruentes, se K ′ é a imagem K sobre um movi-
mento u, ou seja, K ′ = u ·K

Lema 4.8 Podemos induzir uma interpretação geométrica para os parâmetros a,b,φ. Su-
ponha (O;x,y) um sistema de coordenadas cartesianas com origem O e eixos x e y. Dado
um movimento u, se o sistema de coordenadas C for mapeado em um sistema (O′;x′, y′),
então os parâmetros a e b representam a translação em x e y, respecivamente, da origem
O para O′ e o parâmetro φ representa uma rotação anti-horária do eixo x′ em relação ao
eixo x.

Demonstração: Suponha que tenhamos transladado por (a,b) e rotacionado por φ o

sistema (O′;x′, y′) com relação ao sistema (O;x,y). Seja um ponto P de coordenadas

(A,B) no sistema de coordenadas (O′;x′, y′).

Figura 4.2: Sistema de Coordenadas Transladado

Queremos obter as coordenadas desse ponto no sistema original (O;x,y) e assim

mostrar que as equações da Definição 4.6 valem. Assim, temos que:

O′M ′.cos(φ) + a =M

9



4 Resultados(
O′A−M ′A

)
.cos(φ) + a =M

A.cos(φ)−B.tan(φ).cos(φ) + a =M

M = A.cos(φ)−B.sin(φ) + a

Além disso, temos também:

O′N ′.cos(φ) + b =N(
O′B−BN ′

)
.cos(φ) + b =N

B.cos(φ) +A.tan(φ).cos(φ) + b =N

N = B.cos(φ) +A.sin(φ) + b

Portanto, obtemos o seguinte sistema de equações para as coordenadas do ponto P : M = A.cos(φ)−B.sin(φ) + a

N = B.cos(φ) +A.sin(φ) + b

O que prova a interpretação geométrica para os parâmetros a,b,φ. �

No que segue, encontraremos as 1 − f ormas ω1, ω2 e ω3, que são invariantes a

aplicação L∗s induzida por Ls. Analogamente, encontraremos as 1−f ormas invarian-

tes a aplicação R∗s.

Observações 4.9 É usual representarmos o movimento u definido em 4.6 pela seguinte
matriz:

u =


cos(φ) −sin(φ) a

sin(φ) cos(φ) b

0 0 1


Além disso, é facil verificar que para fazermos uma composição de movimentos basta
multiplicarmos as respectivas matrizes e para o movimento inverso basta invertemos a
respectiva matriz.

Definição 4.10 Defina o grupo de movimentosM, como um grupo de matrizes da forma
mostrada na Observação 4.9, com o produto de matrizes como a operação do grupo.

Definição 4.11 Seja um movimento s tal que s ∈M e sB (a0,b0,φ0). Cada movimento
s define dois endomorfimos em M. A transformação a esquerda Ls : u→ s ·u, que pode
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4 Resultados

ser escrita da seguinte maneira

Ls


a → a.cos(φ0)− b.sin(φ0) + a0

b → a.sin(φ0) + b.cos(φ0) + b0

φ → φ+φ0

De maneira análoga temos a transformação a direita Rs : u→ u ·s, que pode ser escrita
da seguinte maneira

Rs


a → a0.cos(φ)− b.sin(φ) + a

b → a0.sin(φ) + b.cos(φ) + b

φ → φ0 +φ

As formas explicitas para Ls e Rs apresentadas na Definição 4.11 serão demonstra-

das no Apêndice deste relatório.

Definição 4.12 Defina as 1− f ormas em M como qualquer expressão da seguinte tipo

ω(u) = α(u).da+ β(u).db+γ(u).dφ,

onde α(u), β(u) e γ(u) são funções de classe C∞ definidas no espaço M.

Observações 4.13 É facil ver que o cunjunto U de todas as 1 − f ormas de M em um
ponto u, que juntamente com a adição e o produto por escalar definidos de maneira na-
tural constituem um espaço vetorial de dimenção três (U,+, ·). O qual chamaremos de
espaço cotangente de M no ponto u e denotaremos por T ∗u . Note que as 1− f ormas da, db
e dφ constituem uma base para T ∗u .

Observações 4.14 Note que as transformações a esquerda Ls e a direita Rs induzem em
T ∗u as aplicações L∗s :ω(u)→ω(s ·u) e R∗s :ω(u)→ω(u ·s). Assim, temos que as seguintes
1− f ormas serão invariantes a L∗s e R∗s

L∗s


ω1 = cos(φ).da+ sin(φ).db

ω2 = −sin(φ).da+ cos(φ.db

ω3 = dφ

R∗s


ω1 = b.dφ+ da

ω2 = −a.dφ+ db

ω3 = dφ

As expressões obtidas paraω1,ω2 eω3, assim como paraω1,ω2 eω3, na observação

4.14, serão demonstradas no Apêndice deste relatório.

Definição 4.15 Sejam ω1,ω2,ω3, 1 − f ormas invariantes a esquerda, então o produto
exterior

dK =ω1 ∧ω2 ∧ω3
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4 Resultados

é uma 3− f orma invariente a esquerda.

Observações 4.16 Note que, dK = ω1 ∧ω2 ∧ω3 = da∧ db∧ dφ. Além disso, a menos
de uma constante, dK é a unica 3− f orma invariante a esqueda em M.

Observações 4.17 Analogamente, podemos definir uma 3− f orma invariante a direita,
tal que, ω1∧ω2∧ω3 = da∧ db∧ dφ = dK . Além disso, oberva-se também que, a menos
de uma constante, essa é a unica 3− f orma invariante a direita em M.

As expressões obtidas para dK nas observações 4.16 e 4.17 são obtidas através do

produto exterior diretamente.

Observações 4.18 Podemos observar que diferenciando-se a identidade u.u−1 = e, onde
u ∈ M e e ∈ M é a matriz identidade, obtemos que dK(u−1) = −dK(u). Daı́ segue que
a 3 − f orma definida em 4.15 é invariante sobre transformações à esquerda e direita e
sobre inverção de movimento. Assim, a chamamos de densidade cinemática para um
grupo de movimentos no plano. A densidade cinemática dK é um elemento de volume
invariante no espaço dos grupos de movimentos M.

Definição 4.19 Definimos que a integral sobre dK sobre um domı́nio em M é a medida
desse conjunto de movimento (medida cinemática).

Exemplo 4.20 Considere um retângulo K = 0ABC e um dominio fixado K0, como

mostrado na figura a seguir. Podemos nos perguntar sobre a medida do conjunto

de movimentos u tais que u.K ∩ K0 , ∅. Essa medida é a integral de dK = da ∧
db ∧ dφ sobre os pontos 0′(a,b) e os ângulos φ tais que u.K ∩ K0 , ∅. Como dK

é invariante a translações a direita e a esquerda e inverções de movimento, não

precisamos nos preocupar com os outros casos pois todos são equivalentes. A tı́tulo

de exemplificação, se K reduzir-se a um ponto P0(0,0) e colocarmos u.P0 = P (a,b),

nós temos:

m(u;uP0 ∈ K0) =
∫
uP0∈K0

da∧ db∧ dφ = 2.π
∫
uP0∈K0

da∧ db = 2.π.F0, (4.1)

onde F0 é a área de K0. A equação 4.1 é uma simples, porém útil, fórmula integral.

Observações 4.21 Podemos obter uma outra expressão para a densidade cinemática.
Tome (P ;x′, y′) um referencial móvel definido pelo ponto P (a,b) e pelo ângulo φ que a
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4 Resultados

Figura 4.3: Posições do reângulo K e domı́nio K0

reta orientada
−−−→
P x′ faz com o eixo x. Se nós definimos esse referencial móvel por essas

novas coordenadas vamos obter uma nova expressão para dK .

Lema 4.22 Sejam (P ;x′, y′) um referencial móvel,
−−−→
P x′ uma reta orientada que denota-

remos por G(p,θ), onde p é a distância da reta
−−−→
P x′ à origem do sistema de coordena-

das (0;x,y) e φ o ângulo desta reta com o eixo x, e t = PH , onde P é o ponto da reta
−−−→
P x′ com sua perpendicular que passa por 0. Assim as fórmulas para a transformação
(p,θ, t) → (a,b,φ), onde θ é o ângulo do segmento p com o eixo x, são dadas por:

a = p.cosθ + t.sinθ (4.2) b = p.sinθ − t.cosθ (4.3) φ = θ − π
2

(4.4)

Demonstração: Obtemos as transformações 4.2 e 4.3 diretamente da transformação

4.4 e de que a = p.cosθ + t.cosφ e b = p.sinθ + t.sinφ. A transformação 4.3 é obtida

diretamente à partir de observações geométricas tomadas as hipóteses. �

Proposição 4.23 Seja a densidade cinemática dada pela Observação 4.16 (dK = da ∧
db∧ dφ) temos que

dK = dG∗ ∧ dt, (4.5)
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4 Resultados

onde G∗ denota que a reta G deve ser considerada com orientação.

Demonstração: A demonstração segue diretamente do Lema 4.22, diferenciando-se

as equações 4.2, 4.3 e 4.4 e calculando o produto exterior. Além disso, note que

dG∗ = dp∧ dθ e, assim, obtemos:

dK = da∧ db∧ dφ = dp∧ dθ ∧ dt = dG∗ ∧ dt

�

Proposição 4.24 Sejam um conjunto convexo K0 cuja área é dada por F0 e perı́metro
L0 e K um segmento orientado de comprimento l. A medida do conjunto de segmentos
congruentes a K que interceptam K0, ou seja, o grupo de movimentos aplicados em K de
modo que u.K ∩K0 , ∅, é dada por

m(K ;K ∩K0 , ∅) = 2.pi.F0 + 2.l.L0

Demonstração: Para a demonstração escolheremos a equação 4.5 obtida na Proposição

4.23 para densidade cinemática, assim temos que

dK = dG∗ ∧ dt

Pela Definição 4.19 temos que a medida para esse grupo de movimentos é a integral

da a equação acima sobre as restrições do seu problema. Portanto,

m(K ;K ∩K0 , ∅) =
∫
K∩K0,∅

dK =
∫
K∩K0,∅

dG∗ ∧ dt = 2
∫
K∩K0,∅

dG∧ dt (4.6)

Para calcularmos explicitamente essa integral, vamos utilizar a seginte expressão

para dt:

dt = ds+ p.dθ, (4.7)

onde ds representa uma variação infinitesimal de da e db na direção φ. Seja σ o

comprimento da corda de K que intercepta K0. Logo, substituindo a equação 4.7 em
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4.6, temos que

m(K ;K ∩K0 , ∅) = 2
(∫

K∩K0,∅
dsdG+ pdφdG

)
= 2

[(∫
G∩K0,∅

dsdG

)
+
(∫

G∩K0,∅
pdφdG

)]
= 2

[(∫
G∩K0,∅

σdG

)
+
(∫

G∩K0,∅
ldG

)]
= 2

[(∫
G∩K0,∅

σdp∧ dθ
)

+
(
l

∫
G∩K0,∅

dG

)]
= 2

[(∫ π

0

∫
G∩K0,∅

σdp∧ dθ
)

+ (l.L0)
]

= 2[(π.F0) + (l.L0)]

= 2.pi.F0 + 2.l.L0 (4.8)

�

A equação 4.7 desta demonstração será demonstrada detalhadamente no Apêndice

deste relatório.

Exemplo 4.25 Vamos avaliar a medida de um conjunto K , de segmentos orientados,

de comprimento l que não podem interceptar dois lados não-consecutivos e inter-

ceptam exatamente i lados de um poligono convexo K0. Seja m0 a medida de um

conjunto de segmentos K que não interceptam nenhum dos lados de K0. Seja m1 a

medida de um conjunto de segmentos K que interceptam exatamente 1 dos lados de

K0. Seja m2 a medida de um conjunto de segmentos K que interceptam exatamente

2 dos lados de K0. Temos que m0,m1 e m2 caracterizam todas as possibilidades

de posições dos segmentos de K . Pois, suponha, por absurdo, que consideremos a

medida m3, de modo que fosse a medida de um conjunto K que interceptam exata-

mente 3 dos lados de K0. Mas, por hipótese, os segmentos não podem interceptar

dois lados não-consecutivos, o que excluio caso em que ocorre m3. Podemos gene-

ralizar o raciocinio para mn e, pela hipótese obteremos que é necessário e suficiente

n ≤ 2, n ∈ N, para caracterizar todas as possibilidades de posições dos segmentos de

K . Assim, temos que:
m0 +m1 +m2 = 2.π.F0 + 2.l.L0

m1 + 2.m2 = 4.l.L0

m2 = l2
2

∑
Ai

((π −Ai) .cotgAi − 1)
(4.9)
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onde Ai′s representam cada um dos ângulos entre os lados de K0. Resolvendo o

sistema 4.6 temos que

m0 = 2.π.F0 − 2.l.L0 + l2
2

∑
Ai

((π −Ai) .cotgAi − 1)

m1 = 4.l.L0 − l2
∑
Ai

((π −Ai) .cotgAi − 1)

m2 = l2
2

∑
Ai

((π −Ai) .cotgAi − 1)

(4.10)

As equações utilizadas no sistema 4.9 serão demonstradas no Apêndice deste re-

latório.

Algumas fórmulas integrais são obtidas análisando como conjuntos convexos se in-

terceptam, o desenvolvimento dessas fórmulas não são necessárias para a resolução

do problema que será proposto na Conclusão deste relatório, entretando são de

grande importância para outros problemas, portanto serão apresentadas no Apêndice

deste relatório.
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5 Conclusões

Nesta seção destacamos um problema importante da Geometria Integral que fez

parte do nosso estudo.

Exemplo 5.1 (Problema da Agulha de Buffon) Considere sobre um planoΠ um con-

junto C de retas paralelas que distam D uma da outra. Qual é a probabilidade de

que uma agulha de tamanho l < D, jogada aleatoriamente sobre Π intersepte uma

das retas de C?

Figura 5.1: Problema Agulha de Buffon

Demonstração: Tome aleatoriamente um conjunto convexo K de largura constante

igual a D e um conjunto convexo K1 contido em K sobre um plano no qual são

consideradas faixas B de largura a, distantes D uma da outra. Assim K encontrará

uma única faixa B e a probabilidade que K1 encontre uma destas faixas é

p =
L1 +π.a
L+π.a

,

onde L e L1 denotam os comprimentos de K e K1, respectivamente. Como L = π.D

então

p =
L1 +π.a
π(D + a)

.
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5 Conclusões

O problema da agulha de Buffon pode ser então resolvido tomando-se a = 0 (as

faixas reduzme-se a retas) e K1 como um segmento de reta de comprimento L1 = 2.s.

Consequentemente

p =
2.s
π.D

�

Exemplo 5.2 (Probabilidade de detectar um dominio convexo por uma procura li-

near) Seja K0 um dominio convexo dentro do qual está outro dominio convexo K . O

processo de fazer um corte aleatório em K0 encontrar K é chamado de procura li-
near. Para o problema em questão suponha K um retângulo de lados a,b(a > s,b > s),

onde s é o compimento das retas em K0. Qual a probabilidade desse reta em K0 in-

terseptar o retângulo K .

Figura 5.2: Problema da Procura Linear

Demonstração: Suponha que todas as retas que estão em K0 formem um conjunto

S. Por definição de probabilidade temos que

p =
m(S;S ∩K , ∅)
m(s ⊂ K0)

(5.1)

Segue da equação 4.8 da Proposição 4.24 que

m(S;S ∩K , ∅) = 2.π.F + 2.s.L, (5.2)

onde F denota a área de K , s o comprimento das retas de S e L o perimetro de K .
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5 Conclusões

Note que, m(s ⊂ K0) =m0, onde m0 está bem definido no Exemplo 4.25, logo

m(s ⊂ K0) = m0

= 2.π.F0 − 2.l.L0 +
l2

2

∑
Ai

((π −Ai) .cotgAi − 1)

= 2.π.a.b − 2.l.(2.a+ 2.b) +
l2

2
.4.

((
π − π

2

)
.cotg

π
2
− 1

)
= 2.

[
π.a.b − l.(2.a+ 2.b) + l2

((
π − π

2

)
.
cosπ/2
sinπ/2

− 1
)]

= 2.
[
π.a.b − 2.l.(a+ b) + l2 (−1)

]
= 2.

(
π.a.b − 2.l.(a+ b)− l2

)
(5.3)

Agora, usando 5.3 e 5.2 em 5.1 segue que

p =
π.F + s.L

π.a.b − 2.l.(a+ b)− l2

�
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6 Apêndice

6.1 As formas explicitas para Ls e Rs

De acordo com a Definição 4.11 temos que a transformação a esquerda é dada por

Ls : u → s · u. Sejam as seguintes matrizes que representam u, uma transformação

arbitrária, e s como na Definição 4.11

u =


cosφ −sinφ a

sinφ cosφ b

0 0 1

 s =


cosφ0 −sinφ0 a0

sinφ0 cosφ0 b0

0 0 1


Temos então que

Ls :


cosφ −sinφ a

sinφ cosφ b

0 0 1

→

cosφ0 −sinφ0 a0

sinφ0 cosφ0 b0

0 0 1

 ·

cosφ −sinφ a

sinφ cosφ b

0 0 1

 =

=


cos(φ+φ0) −sin(φ+φ0) a.cosφ0 − b.sinφ0 + a0

sin(φ+φ0) cos(φ+φ0) a.sinφ0 + b.cosφ0 + b0

0 0 1


Portanto, concluimos o que querı́amos, ou seja, a transformação a esqueda pode ser

dada explicitamente da seguinte maneira

Ls


a → a.cos(φ0)− b.sin(φ0) + a0

b → a.sin(φ0) + b.cos(φ0) + b0

φ → φ+φ0

Analogamente, temos a transformação a direita dada por Rs : u→ u · s. Sejam s e u

da maneira que expressamos acima, logo

Rs :


cosφ −sinφ a

sinφ cosφ b

0 0 1

→

cosφ −sinφ a

sinφ cosφ b

0 0 1

 ·

cosφ0 −sinφ0 a0

sinφ0 cosφ0 b0

0 0 1

 =
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=


cos(φ0 +φ) −sin(φ0 +φ) a0.cosφ− b0.sinφ+ a

sin(φ0 +φ) cos(φ0 +φ) a0.sinφ+ b0.cosφ+ b

0 0 1


Portanto, concluimos o que querı́amos, ou seja, a transformação a direita pode ser

dada explicitamente da seguinte maneira

Rs


a → a0.cos(φ)− b.sin(φ) + a

b → a0.sin(φ) + b.cos(φ) + b

φ → φ0 +φ

6.2 As expressões para as 1− f ormas emM

Para encontrar uma forma explicita para as 1− f ormas invariantes a aplicação L∗s :

ω(u)→ω(s ·u) consedere a matrizΩLB u−1du. Vamos verificar queΩL é realmente

invariante a L∗s

L∗sΩL = (s ·u)−1d(s ·u) = u−1 · s−1 · s · du = u−1du =ΩL

Assim, os elementos de ΩL são 1 − f ormas invariantes a aplicação L∗s. Para definir

explicitamente os elementos de ΩL considere a matriz u ∈ M, sua inversa e sua

diferencial.

u =


cosφ −sinφ a

sinφ cosφ b

0 0 1

 u−1 =


cosφ sinφ −a.cosφ− b.sinφ
−sinφ cosφ a.sinφ− b.cosφ

0 0 1


du =


−sinφ.dφ −cosφ.dφ da

cosφ.dφ −sinφ.dφ db

0 0 0


Temos então que

ΩL = u−1du =


cosφ sinφ −a.cosφ− b.sinφ
−sinφ cosφ a.sinφ− b.cosφ

0 0 1

 ·

−sinφ.dφ −cosφ.dφ da

cosφ.dφ −sinφ.dφ db

0 0 0

 =
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=


0 −dφ cosφ.da+ sinφ.db

dφ 0 −sinφ.da+ cosφ.db

0 0 0


Portanto, concluimos o que querı́amos, ou seja, as 1−f ormas invariantes a aplicação

L∗s podem ser dadas explicitamente da seguinte maneira

L∗s


ω1 = cos(φ).da+ sin(φ).db

ω2 = −sin(φ).da+ cos(φ.db

ω3 = dφ

Analogamente, para encontrar as 1 − f ormas invariantes a aplicação R∗s : ω(u) →
ω(u · s) considere a matriz ΩRB duu−1. Vamos verificar que ΩR é realmente invari-

ante a R∗s
R∗sΩR = d(u · s)(u · s)−1 = du · s · s−1 ·u−1 = duu−1 =ΩR

Assim, os elementos de ΩR são 1 − f ormas invariantes a aplicação R∗s. Para definir

explicitamente os elementos de ΩR considere a matriz u ∈ M, sua inversa e sua

diferencial dadas acima. Temos então que

ΩR = duu−1 =


−sinφ.dφ −cosφ.dφ da

cosφ.dφ −sinφ.dφ db

0 0 0

 ·

cosφ sinφ −a.cosφ− b.sinφ
−sinφ cosφ a.sinφ− b.cosφ

0 0 1

 =

=


0 dφ b.dφ+ da

dφ 0 −a.dφ+ db

0 0 0


Portanto, concluimos o que querı́amos, ou seja, as 1−f ormas invariantes a aplicação

R∗s podem ser dadas explicitamente da seguinte maneira

R∗s


ω1 = b.dφ+ da

ω2 = −a.dφ+ db

ω3 = dφ
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6.3 A equação 4.7

Considere as equações 4.2 e 4.3 do Lema 4.22. Vamos considerar o seguinte sistema a = p.cosθ + t.sinθ

b = p.sinθ − t.cosθ
(6.1)

Multiplicamos as equações do sistema 6.1 por (sinθ) e (−cosθ), respectivamente.

Assim, obtemos  sinθ.a = p.cosθ.sinθ + t.sin2θ

−cosθ.b = −p.sinθ.cosθ + t.cos2θ

sinθ.a− cosθ.b = t (6.2)

Diferenciando a equação 6.2 obtemos

dt = sinθ.da− cosθ.db+ (a.cosθ + b.sinθ).dθ (6.3)

Multipliquemos, novamente, as equações do sistema 6.1 por (cosθ) e (sinθ), respec-

tivamente. Assim, obtemos cosθ.a = p.cos2θ + t.sinθ.cosθ

sinθ.b = p.sin2θ − t.cosθ.sinθ

cosθ.a+ sinθ.b = p (6.4)

Observe também que podemos considerar infinitésimos da e db na direção φ, tendo

somente como restrição que K∩K0 , ∅ e K é determinado pela reta G. Como mostra

a figura a seguir
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6 Apêndice

Desta maneira, considerando os movimentos de K . Temos: da = cosφ.ds

db = sinφ.ds

Utilizando a equação 4.4 do Lema 4.22. Temos que da = sinθ.ds

db = −cosθ.ds
(6.5)

Multiplicamos as equações do sistema 6.5 por (sinθ) e (−cosθ), respectivamente.

Assim, obtemos  sinθ.da = sin2θ.ds

−cosθ.db = cos2θ.ds

sinθ.da− cosθ.db = ds (6.6)

Finalmente, substituindo as equações 6.4 e 6.6 na equação 6.3 obtemos o que querı́amos,

ou seja, a seguinte equação para dt

dt = ds+ p.dθ,

6.4 O sistema de equações 4.9

As equações do sistema 4.9 serão detalhadas nas próximas seções uma a uma.

6.4.1 Primeira equação

m0 +m1 +m2 = 2.π.F0 + 2.l.L0

Para entender essa equação vamos considerar a medida para um conjunto de seg-

mentos orientados que interceptam um conjunto convexo. Essa medida foi obtida

na proposição 4.24 e é dada por

m(K ;K ∩K0 , ∅) = 2.pi.F0 + 2.l.L0

Para essa medida são considerados os segmentos que estão no interios do conjunto

convexo m0, os segmentos que interceptam o bordo 1 vez m1 e os que interceptam

2 vezes o bordo m2. Não existem segmentos que interceptem o bordo do convexo 3
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vezes justamente pois ele é um convexo. Assim concluı́mos que

m0 +m1 +m2 =m(K ;K ∩K0 , ∅) = 2.pi.F0 + 2.l.L0

Portanto, a primeira equação do sistema 4.9 segue como querı́amos.

6.4.2 Segunda equação

m1 + 2.m2 = 4.l.L0

Para essa equação vamos enunciar o seguinte exemplo

Exemplo 6.1 Vamos avaliar a medida de um conjunto de segmentos orientados K ,

de comprimento l, que interceptam os lados de uma curva poligonal Γ , de compri-

mento L0 e sem auto-intersecções. Pela Definição 4.19 temos que a medida para

esse grupo de movimentos é a integral da densidade cinemática sobre as restrições

do seu problema. Portanto

m(K ;K ∩ Γ , ∅) =
∫
K∩Γ,∅

dK

Suponha agora que a poligonal Γ seja composta de n lados, pela equação 4.8 da

Proposição 4.24, considerando que temos duas orientações para a curva Γ e a área

F0 de Γ é nula, temos que∫
K∩Γ,∅

dK =
∫
K∩Γi

ndK = 2.(2.pi.F0 + 2.l.L0) = 4.l.L0

Ou seja,

m(K ;K ∩ Γ , ∅) = 4.l.L0

Para a medida obtida no exemplo 6.1 temos que serão considerados os segmentos

que interceptam o bordo 1 vez m1 e duas vezes os segmentos que interceptam o

bordo 2.m2, pois a curva Γ não possui interior logo m0 = 0. Assim concluı́mos que

m1 + 2.m2 =m(K ;K ∩ Γ , ∅) = 4.l.L0

Portanto, a segunda equação do sistema 4.9 segue como querı́amos.
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6.4.3 Terceira equação

m2 =
l2

2

∑
Ai

((π −Ai) .cotgAi − 1)

Para essa equação vamos enunciar o seguinte exemplo

Exemplo 6.2 Vamos avaliar a medida de um conjunto de segmentos orientados K ,

de comprimento l, que interceptem ambos os lados de um ângulo dado A (será

denotado da mesma maneira o vértice A do ângulo e sua medida). Denotaremos por

σ a corda que corte o ângulo A por uma reta G que contem K .

Pela Definição 4.19 temos que a medida para esse grupo de movimentos é a integral

da densidade cinemática sobre as restrições do seu problema. Portanto

m(K ;K ∩AB , ∅,K ∩AC , ∅) =
∫
K∩AB,∅,K∩AC,∅

dK

=
∫
K∩AB,∅,K∩AC,∅

dG∗ ∧ dt

= 2.
∫
K∩AB,∅,K∩AC,∅

dtdG

= 2.
∫
K∩AB,∅,K∩AC,∅

(l − σ )dG

= 2.
(∫

K∩AB,∅,K∩AC,∅
ldG −

∫
K∩AB,∅,K∩AC,∅

σdG

)
= 2.

(∫
σ≤l

ldG −
∫
σ≤l

σdG

)
= 2.

(
l.

∫
σ≤l

dp∧ dφ−
∫
σ≤l

σdp∧φ
)
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= 2.
(
l.

∫
σ≤l
|AE|dφ−

∫
σ≤l

σdpφ

)
= 2.

(
2.

∫ π

A
T dφ−

∫ π

A
T dφ

)
=

∫ π

A
2.T dφ

=
∫ π−A

0
2.T dφ (6.7)

onde T representa a área do triângulo AHM. Para podermos avaliar 6.7 vamos

tentar construir uma função T (φ). Temos que β = π
2 − (φ +A). Assim pela lei dos

senos temos que
l

sinA
=
|AH |
sinβ

=
|AH |

cos(φ+A)
(6.8)

Definamos h como a altura do triângulo AHM com relação a base AH . Temos que

sin
(π

2
−φ

)
=
h
l
⇔ h = l.cosφ (6.9)

Multiplicando a equação 6.8 por h e, posteriormente, utilizando a equação 6.9, te-

mos que

l.h
sinA

=
|AH |.h

cos(φ+A)
l2.cosφ

sinA
=

2.T
cos(φ+A)

2.T =
l2

sinA
.cosφ.cos(φ+A) (6.10)

Assim, obtemos uma função T (φ) conveniente, da substituição de 6.10 em 6.7 segue

que ∫ π−A

0
2.T dφ =

∫ π−A

0

l2

sinA
.cosφ.cos(φ+A)dφ

=
l2

sinA

{∫ π−A

0
cosφ.(cosA.cosφ− sinA.sinφ)dφ

}
=

l2

sinA

{∫ π−A

0
cosA.cos2φdφ−

∫ π−A

0
sinA.sinφ.cosφdφ

}
=

l2

sinA

{
cosA.

∫ π−A

0
cos2φdφ− sinA

∫ π−A

0
sinφ.cosφdφ

}

27



6 Apêndice

=
l2

sinA

{
cosA.

∫ π−A

0

1 + cos(2.φ)
2

dφ− sinA
∫ π−A

0
sinφ.cosφdφ

}
=

l2

sinA

{
cosA

2
.

[∫ π−A

0
1dφ+

∫ π−A

0
cos(2.φ)dφ

]
− sinA

∫ π−A

0
sinφ.cosφdφ

}
=

l2

sinA

cosA2
.

[
(π −A) +

sin(s.φ)
2

]π−A
0
− sinA.

(
sin2φ

2

)π−A
0


=

l2

sinA

{
cosA

2
.

[
(π −A) +

sin(2.(π −A))
2

]
− sinA.sin

2(π −A)
2

}
=

l2

2.sinA

[
(π −A).cosA− sinA.cos2A− sinA.sin2A

]
=

l2

sinA
((π −A).cotA− 1) (6.11)

Segue da equação 6.7 e da equação 6.11 que

m(K ;K ∩AB , ∅,K ∩AC , ∅) =
l2

sinA
((π −A).cotA− 1)

Para a medida obtida no exemplo 6.2 temos que serão considerados somente os

segmentos que interceptam o bordo duas vezes, assim sendo um convexo cujo bordo

é uma poligonal, para m2 teremos um somatório de cada ângulo sobre a medida

obtida no exemplo 6.2. Assim concluimos que

m2 =
∑
Ai

m(K ;K ∩AB , ∅,K ∩AC , ∅) =
l2

2

∑
Ai

((π −Ai) .cotgAi − 1)

Portanto, a terceira equação do sistema 4.9 segue como querı́amos.

6.5 Algumas fómulas integrais

Proposição 6.3 Sejam K1 um conjunto convexo de área F1 e perı́metro L1 e K0 um con-
junto convexo de área F0 e perı́metro L0. A posição de K1 é definida pelas coordenadas
de P1 = (x1, y1), tal que P1 ∈ K1, e pelo ângulo φ, que é o ângulo da direção P1A com a
direção P0x. Tomando a densidade cinemática de K1 tal que dK1 = dx1∧dy1∧dφ. Temos
então que

m(K1;K1 ∩K0 , ∅) = 2.π.(F0 +F1) +L0.L1 (6.12)

Demonstração: Seja u ∈M um movimento tal que u ·K1∩K0 , ∅. Queremos calcular

a medida das posições de K1, onde K1 intersepta K0. Seja dK1 = dx1 ∧ dy1 ∧ dφ
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a densidade cinemática referente ao convexo K1. Pela Definição 4.19 temos que a

medida para esse grupo de movimentos é a integral da densidade cinemática sobre

as restrições do seu problema. Portanto

m(K1;K1 ∩K0 , ∅) =
∫
K1∩K0,∅

dK1 =
∫
K1∩K0,∅

dx1 ∧ dy1 ∧ dφ

Seja dP1 = dx1 ∧ dy1, note que
∫
K1∩K0,∅

dP1 = F01, onde F01 é a área mista de Min-

kowski. De acordo com com [3] capı́tulo 1 seção 3 temos que F01 = F0 + F1 + 2.F∗01,

onde F∗01 é a área mista de K0 e K1. Portanto∫
K1∩K0,∅

dx1 ∧ dy1 ∧ dφ =
∫
K1∩K0,∅

dP1 ∧ dφ =
∫ 2.π

0
(F0 +F1 + 2.F∗01)dφ

De acordo com com [3] capı́tulo 1 seção 3 temos também que
∫ 2.π

0
F∗01dφ =

1
2
.L0.L1.

Portanto ∫ 2.π

0
(F0 +F1 + 2.F∗01)dφ = 2.π.(F0 +F1) +L0.L1

Portanto, a medida de todas posições de um conjunto convexo K1 nas quais ele intercepta
outro conjunto convexo fixado K0 é

m(K1;K1 ∩K0 , ∅) =
∫
K1∩K0,∅

dK1 = 2.π.(F0 +F1) +L0.L1

�
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Exemplo 6.4 Considere as mesmas condições da Proposição 6.3. Se K1 é um seg-

mento de comprimento l, então F1 = 0 e L1 = 2.l. Assim a equação 6.12 produz a

equação 4.8.

Exemplo 6.5 Tome K0 e K1 dois dominios planos, não necessariamente convexos, de

áreas F0 e F1, respectivamente. Assuma que K0 esta fixo e K1 esta em movimento.

Tomemos dK1 a densidade cinemática de K1. Se P (x,y) é um poto no plano tal que

P ∈ K0 ∩K1 e dP = dx∧ dy sua densidade. Vamos considerar a integral

I =m(P ,K1;P ∈ K0 ∩K1) =
∫
P ∈K0∩K1

dP ∧ dK1

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar P fixo,

então temos

I =
∫
P ∈K0∩K1

dP ∧ dK1

=
∫
P ∈K0

dP

∫
P ∈K1

dK1

= F0.

∫
P ∈K1

dx∧ dy ∧ dφ

= 2.π.F0.

∫
P ∈K1

dx∧ dy

= 2.π.F0.

∫
P ∈K1

dP

= 2.π.F0.F1 (6.13)

Podemos também fixar K1, então terı́amos

I =
∫
P ∈K0∩K1

dP ∧ dK1 =
∫
P ∈K0∩K1

dP dK1 =
∫
P ∈K0∩K1

f01dK1, (6.14)

onde f01 é a área de K0 ∩K1. Logo, por 6.13 e 6.14∫
P ∈K0∩K1

f01dK1 = I = 2.π.F0.F1 (6.15)

Exemplo 6.6 Tome K0 e K1 dois dominios planos, não necessariamente convexos,
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de áreas F0 e F1, respectivamente, de modo que suas fronteiras são curvas de com-

primento finito L0 e L1, respectivamente. Tome α(s0) e α(s1) pontos de ∂K0 e ∂K1,

respectivamente. Vamos considerar a integral

J1 =
∫
α(s0)∈K1

ds0 ∧ dK1

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar α(s0)

fixo, então temos

J1 =
∫
α(s0)∈K1

ds0 ∧ dK1

=
∫
∂K0

ds0

∫
α(s0)∈K1

dK1

= L0.

∫
α(s0)∈K1

dx∧ dy ∧ dφ

= 2.π.L0.

∫
α(s0)∈K1

dx∧ dy

= 2.π.L0.

∫
α(s0)∈K1

dP

= 2.π.L0.F1 (6.16)

Podemos também fixar K1, então terı́amos

J1 =
∫
α(s0)∈K1

ds0 ∧ dK1 =
∫
α(s0)∈K1

ds0dK1 =
∫
α(s0)∈K1

l01dK1, (6.17)

onde l01 é o comprimento da curva ∂K0 ∩K1. Logo, por 6.16 e 6.17∫
α(s0)∈K1

l01dK1 = J1 = 2.π.L0.F1 (6.18)

Vamos considerar agora a seguinte integral

J2 =
∫
α(s1)∈K0

ds1 ∧ dK0

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar α(s1)
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fixo, então temos

J2 =
∫
α(s1)∈K0

ds1 ∧ dK0

=
∫
∂K0

ds1

∫
α(s1)∈K0

dK0

= L1.

∫
α(s1)∈K0

dx∧ dy ∧ dφ

= 2.π.L1.

∫
α(s1)∈K0

dx∧ dy

= 2.π.L1.

∫
α(s1)∈K0

dP

= 2.π.L1.F0 (6.19)

Podemos também fixar K0, então terı́amos

J2 =
∫
α(s1)∈K0

ds1 ∧ dK0 =
∫
α(s1)∈K0

ds1dK0 =
∫
α(s1)∈K0

l10dK0, (6.20)

onde l10 é o comprimento da curva ∂K1 ∩K0. Logo, por 6.19 e 6.20∫
α(s1)∈K0

l10dK0 = J2 = 2.π.L1.F0 (6.21)

Mas para a equação 6.20 podemos simplismente fazer uma mudança de ı́ndices, ou

seja, para 6.20 podemos trocar K0 por K1 e o inverso, pois não há distinções entre os

domı́nios. Portanto, 6.20 torna-se∫
α(s0)∈K1

l10dK1 = J2 = 2.π.L1.F0 (6.22)

Finalmente, somando 6.18 e 6.22 temos que∫
α(s0)∈K1

l10dK1 +
∫
α(s0)∈K1

l01dK1 = 2.π.L1.F0 + 2.π.L0.F1∫
α(s0)∈K1

L01dK1 = 2.π.(L1.F0 +L0.F1), (6.23)

onde L01 é a fronteira de K0 ∩K1.

Exemplo 6.7 Tome K0, K1 e K2 três comjuntos convexos fechados no plano. Quere-
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mos calcular a medida m(K1,K2;K0 ∩K1 ∩K2 , ∅). Sejam dK1 e dK2 as densidades

cinemática de K1 e K2, respectivimanete. Suponha K0 fixo, pela Definição 4.19 te-

mos que a medida é a integral da densidade cinemática sobre as restrições do seu

problema, portanto

m(K1,K2;K0 ∩K1 ∩K2 , ∅) =
∫
K0∩K1∩K2,∅

dK1 ∧ dK2

mantendo K1 também fixo temos que pela equação 6.12 da Proposição 6.3∫
K0∩K1∩K2,∅

dK1 ∧ dK2 =
∫
K0∩K1∩K2,∅

[2.π.(F2 + f01) +L2.L01]dK2

= 2.π.F2.

∫
K0∩K1∩K2,∅

dK1 + 2.π.
∫
K0∩K1∩K2,∅

f01dK1 +L2.

∫
K0∩K1∩K2,∅

L01dK1

pelas equações 6.12, 6.15 e 6.23 temos que

2.π.F2.

∫
K0∩K1∩K2,∅

dK1 + 2.π.
∫
K0∩K1∩K2,∅

f01dK1 +L2.

∫
K0∩K1∩K2,∅

L01dK1

= 2.π.F2 (2.π(F0 +F1) +L0.L1) + 2.π.(2.π.F0.F1) +L2 (2.π.(F1.L0 +L1.F0))

= (2.π)2.(F0.F2 +F0.F1 +F1.F − 2) + 2.π.(F0.L1.L2 +F1.L0.L2 +F2.L0.L1)

Exemplo 6.8 (Valores médios e cobertura) seja K0 um conjunto convexo de área F0

e perı́metro L0. Sejam K1,K2, . . . ,Kn n conjuntos convexos de área F e perı́metro L.

Suponha que Ki ∩ K0 , ∅. Seja fr a área de K0 que tem cobertura por exatamente

r conjuntos Ki . Vamos considerar a integral sobre todos os pontos P ∈ K0 que são

cobertos exatamente por r conuntos Ki .

Ir =
∫
dK1 ∧ · · · ∧ dKn ∧ dP

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos manter P

fixo, então temos

Ir =
∫
dK1 ∧ · · · ∧ dKn ∧ dP

=
∫

[2.π.(F0 +F) +L.L0]dK2 ∧ · · · ∧ dKn ∧ dP
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=
∫

[(2.π.F) + (2.π.F0 +L.L0)]dK2 ∧ · · · ∧ dKn ∧ dP

=
∫

[(2.π.F) + (2.π.F0 +L.L0)] . [(2.π.F) + (2.π.F0 +L.L0)]dK3 ∧ · · · ∧ dKn ∧ dP

=
∫

[(2.π.F) + (2.π.F0 +L.L0)]ndP

=
∫ (

n
r

)
(2.π.F)r .(2.π.F0 +L.L0)n−rdP

=
(
n
r

)
(2.π.F)r .(2.π.F0 +L.L0)n−r

∫
dP

=
(
n
r

)
(2.π.F)r .(2.π.F0 +L.L0)n−r .F0 (6.24)

Por outro lado, se deixarmos K1,K2, . . . ,Kn fixados, temos que

Ir =
∫
dK1 ∧ · · · ∧ dKn ∧ dP =

∫
dP dK1 . . .dKn =

∫
frdK1 . . .dKn (6.25)

Portanto, de 6.24 e 6.25, segue que∫
frdK1 . . .dKn = Ir =

(
n
r

)
(2.π.F)r .(2.π.F0 +L.L0)n−r .F0

Se quisermos calcular o valor esperado para fr , temos que

E(fr) =
m(K1, . . . ,Kn;

⋂
(nr)Ki ∩K0 , ∅)

m(K1;K1 ∩K0 , ∅) . . .m(Kn;Kn ∩K0 , ∅)

=
(n
r

)
(2.π.F)r .(2.π.F0 +L.L0)n−r .F0

[2.π.(F +F0) +L.L0]n
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