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REsuMO

“Em 1961, ano em que se constituiu a Sociedade Internacional de Estereologia,
deu-se a seguinte defini¢do: A Estereologia é um conjunto de métodos para exploragao
do espaco tridimensional a partir do conhecimento de se¢des bidimensionais e projecoes
sobre planos. Ou seja, trata-se da explora¢do do espacgo a partir do plano.” (cf. [1]],
p-1).

O inicio do desenvolvimento da estereologia e dreas da matematica associadas e
ela deu-se com o desenvolvimento da probabilidade geométrica e da geometria in-
tegral. Ambas as dreas sdo produtos da solugdo do problema da agulha de Buffon.
“Georges-Louis Leclerc, Conde de Buffon (1707-1788), é famoso pela seguinte “ex-
periéncia”: Suponhamos que estamos numa sala cujo chdo é constituido por tabuas
paralelas. Designemos a distancia entre as tdbuas por a. Tomemos uma agulha, ou
um objeto semelhante, de comprimento 2.r menor do que a. Esta condigdo asse-
gura que, se deixarmos cair a agulha no chdo, ela atravessard quando muito uma
linha que divide tdbuas diferentes. A probabilidade de que esse acontecimento

ocorra (isto é, que a agulha, ao cair no chao, ndo fique totalmente contida no in-

4.r
m.a’

proporcionando-nos, portanto, a possibilidade de calcular esta constante por via
“experimental”. [...]”(cf. [2], p.124-125).

Para podermos estudar as bases da teoria estereoldgica dividimos o projeto em trés

terior de uma tunica tabua) é entdo P = Esta féormula contém a constante 7@ —

partes de estudo: os conjuntos de faixas no plano, o grupo de movimentos no plano

e a densidade cinemaética desses movimentos.

Palavras Chaves: densidade, conjuntos convexos, estereologia, geometria integral



1 INTRODUCGCAO

“A Estereologia é geralmente considerada como a metodologia destinada a estimacgao
de pardmetros geométricos de estruturas espaciais, a partir da informagao pro-
porcionada mediante uma amostra geométrica adequada. Trata-se, portanto, de
uma ciéncia que combina resultados teéricos de Geometria Integral, Probabilidade
Geométrica e Estatistica. Os resultados obtidos em Estereologia, até aqueles mais
tedricos, inspiram-se em problemas levantados em outras ciéncias, problemas como
a estimacdo da proporc¢do da quantidade de material em uma rocha, o namero de
neur6nios em uma regido cerebral ou o comprimento dos dendritos neurais. Uma
vez formulado o problema na linguagem matemadtica adequada, trata-se de uma
submersao do problema na Geometria Integral para obter-se a férmula apropriada
que nos leve ao parametro de interesse”(cf. [1]], p.2).

Probabilidade, geometria, medida e grupos formam as bases da Geometria Inte-
gral, cujos primeiros resultados foram obtidos aos anos de 1935-1939 por W. Blas-
chke e seu grupo de estudos na Universidade de Hamburgo. Outra drea de grande
importdncia para a matemadtica é a probabilidade geométrica, seu desenvolvimentoo
histérico pode ser visto da seguinte maneira: “[...] o problema da agulha de Buffon
tem uma extraordindria importancia histérica: foi o primeiro problema de um novo
territério, a Teoria da Probabilidade Geométrica, e nesse sentido rasgou horizontes
para novas ideias matematicas, que ainda hoje frutificam.”(cf. [2], p.131).

Um dos grandes dilemas histérico sobre a Teoria da Probabilidade Geométrica con-
siste no paradigma: “Terd Buffon realmente lan¢ado agulhas?”. “Em notdvel contraste
com o registo histérico, existe na comunidade matemadtica uma impressao genera-
lizada de que Buffon teria ndo apenas considerado a possibilidade de determinar
uma aproximacao ao valor de 7t por meio de uma “experiéncia” como, de fato, a te-
ria mesmo chegado a realizar. [...] Muitos outros livros de Histéria da Probabilidade
sdao omissos sobre a ligacdo de Buffon a aproximacao experimental de 77, deixando a
questdo totalmente em aberto.”(cf. [2]], p.129).

Atualmente, resolver este e outros problema utilizando ferramentas da Geometria

Integral, por exemplo, é o cerne de uma pesquisa basica e é sobre isso este relatério.



2 OBJETIVOS

2.1 Objetivos Gerais

Desenvolver uma rotina de estudo individual.
Aprimorar o raciocinio légico-matematico.

Aprender a isolar um problema em sua esséncia matemadtica para entdo po-
der associar problemas vindos de diferentes areas e encontrar solugdes mais

simples e mais gerais para os mesmos.

Familiarizar-se com a pesquisa em Matematica, aprender a questionar e buscar

solugdes novas e/ou ja existentes de problemas.

Estimular o rigor matemdtico como uma forma natural de formular e pensar

sobre problemas matematicos.

2.2 Objetivos Especificos

Aprender importantes conceitos e propriedades da drea da matematica cha-

mada Geometria Integral.

Aplicar resultados obtidos nesta drea a outras dreas da Matemadtica. Este pro-
jeto utilizou fortemente conceitos das drea de formas diferenciais e geometria

plana.

Aprender importantes resultados da matematica, como o Teorema da agulha

de Buffon, férmulas integrais para densidade cinematica.



A metodologia de trabalho nesta IC deu-se por meio de apresenta¢des semanais de

alguns capitulos do livro [3], considerado uma grande referéncia da area.

Além disso, foram resolvidos diversos exercicios a respeito dos temas estudados.



4 RESULTADOS

4.1 Conjuntos de faixas no plano

No que segue desta se¢do,vamos fazer algumas defini¢ées e provar algumas proposigdes
que serdo necessarias para a resolu¢ao do problema da agulha de Buffon, que sera

exibida na conclusao deste relatério.

Definicao 4.1 Uma faixa B de largura a no plano consiste em uma parte fechada do

plano entre duas retas paralelas cuja distidncia entre uma e outra é a.

Definicao 4.2 A posicdo de uma faixa B sera determinada pela posi¢do da reta que equi-

dista das retas paralelas da fronteira da faixa.

~
M 1L

Figura 4.1: Posi¢do de uma Faixa

Definicao 4.3 A densidade de um conjunto de faixas B(p, ) no plano é:
dB=dpAdo,

onde p e ¢ denotam as coordenadas da reta central G da faixa B.



4 Resultados

Proposicao 4.4 A medida de um conjunto de faixas B no plano sobre um conjunto con-

vexo fechado K que intercepa B é

m(B;BﬁKi@):j dB=L+m.a,
BNK=0

onde L é o perimetro de K e a a largura de B.

Demonstragdo: Denotamos por G a reta central de B, assim:

f dB:J dp/\d({):L+2.T(.E=L+T(.a
BNK=0 GNK, =0 2

O

Proposicao 4.5 Tome Ky um conjunto convexo contido em um outro conjunto convexo
K fechado. A probabilidade que uma faixa B de largura a intersecte Ky, dado que ela

intersecta K, é de:
Ll + 7.4

~ L+ma
Demonstragdo: Por definicao de probabilidade:

_m(B;KlﬂB:t@)_L1+n.a
p= m(B;KNB=0) L+ma

4.2 O grupo de movimentos no plano: densidade
cinematica

Para esta se¢dao vamos fazer algumas defini¢des e provar algumas proposi¢oes que
serdo necessdrias para a resolugao de um problema que serd proposto na conclusao

deste relatdrio.

Defini¢ao 4.6 Assuma o plano euclidiano referenciado por um sistema retangular de

coordenadas cartesianas. Definimos um movimento como a transformagao:

u:P(x,y) > P'(x,y)



4 Resultados
Que serda representado pelas equagdes:

x' = x.cos(Pp)—y.sin(¢p)+a
v’ =x.sin(¢p)+y.cos(¢p)+b

u

onde a, b, sdo parametros, de modo que —co <a,b<ocoe0<¢p < 2.m.

Definicao 4.7 Dizemos que K e K’ sio congruentes, se K’ é a imagem K sobre um movi-

mento u, ou seja, K’ =u-K

Lema 4.8 Podemos induzir uma interpretacio geométrica para os pardmetros a,b, . Su-
ponha (O;x,y) um sistema de coordenadas cartesianas com origem O e eixos x e y. Dado
um movimento u, se o sistema de coordenadas C for mapeado em um sistema (O’;x’,v’),
entdo os pardmetros a e b representam a transla¢do em x e y, respecivamente, da origem
O para O’ e o parametro ¢ representa uma rotagdo anti-horaria do eixo x’ em relagio ao

eixo Xx.

Demonstragdo: Suponha que tenhamos transladado por (4, b) e rotacionado por ¢ o
sistema (O’;x’,y’) com relagdo ao sistema (O;x,y). Seja um ponto P de coordenadas

(A, B) no sistema de coordenadas (O’;x’,y").

QF—-=-=-=————-—-_

0]

Figura 4.2: Sistema de Coordenadas Transladado

Queremos obter as coordenadas desse ponto no sistema original (O;x,y) e assim

mostrar que as equagdes da Definigao[4.6|valem. Assim, temos que:

O’M’.cos(¢p)+a=M



4 Resultados

(m—M).cos((f)) +a=M
A.cos(¢p)—B.tan(p).cos(¢p)+a=M
M = A.cos(¢p) —B.sin(¢p) +a

Além disso, temos também:

O'N’.cos(p)+b=N
(O’B-BN’).cos() +b=N
B.cos(¢) + A.tan(¢).cos(p)+b=N
N = B.cos(¢) + A.sin(¢) + b

Portanto, obtemos o seguinte sistema de equagdes para as coordenadas do ponto P:

M = A.cos(¢p)—B.sin(¢p)+a
N =B.cos(¢p) + A.sin(Pp)+b

O que prova a interpretagdo geométrica para os parametros a, b, ¢. ]
No que segue, encontraremos as 1 — formas wy, w, e w3, que sdo invariantes a
aplicacdo L; induzida por L,. Analogamente, encontraremos as 1 — formas invarian-

tes a aplicagao R;.

Observagoes 4.9 E usual representarmos o movimento u definido em pela seguinte

matriz:

cos(¢p) —sin(¢Pp) a
u=|sin(¢p) cos(¢p) b
0 0 1

Além disso, é facil verificar que para fazermos uma composicio de movimentos basta
multiplicarmos as respectivas matrizes e para o movimento inverso basta invertemos a

respectiva matriz.

Definicao 4.10 Defina o grupo de movimentos M, como um grupo de matrizes da forma

mostrada na Observagdo com o produto de matrizes como a operagdo do grupo.

Defini¢ao 4.11 Seja um movimento s tal que s € M e s := (ag, by, ¢g). Cada movimento

s define dois endomorfimos em M. A transformacgdo a esquerda L;: u — s-u, que pode

10



4 Resultados

ser escrita da sequinte maneira

a —a.cos(¢pg)—b.sin(¢pg)+ag
LS b —asin(pg)+ b.cos(Pg) + by

¢ —d+do

De maneira analoga temos a transformagdo a direita R, : u — u-s, que pode ser escrita
da segquinte maneira
a —ag.cos(P)—b.sin(p)+a
Rss b —ag.sin(P)+b.cos(Pp)+b

¢ —Poto
As formas explicitas para L; e R; apresentadas na Definigao serdo demonstra-
das no Apéndice deste relatério.

Defini¢ao 4.12 Defina as 1 — formas em T como qualquer expressdo da seguinte tipo
w(u)=a(u).da+p(u).db+y(u).do,

onde a(u), p(u) e y(u) sdo fungoes de classe C* definidas no espago M.

Observacgées 4.13 £ facil ver que o cunjunto Ll de todas as 1 — formas de M em um
ponto u, que juntamente com a adigdo e o produto por escalar definidos de maneira na-
tural constituem um espago vetorial de dimengdo trés (U, +,-). O qual chamaremos de
espago cotangente de N no ponto u e denotaremos por T,;. Note que as 1 — formas da, db

e d¢ constituem uma base para T.

Observacoes 4.14 Note que as transformacoes a esquerda Lg e a direita R, induzem em
T,; as aplicagdes L; : w(u) = w(s-u) e Ry : w(u) — w(u-s). Assim, temos que as seguintes

1 — formas serdo invariantes a L; e R},

w1 = cos(P).da+sin(¢p).db w' =b.dp+da
L3 wy =—sin(¢p).da+ cos(¢p.db R;{ w?>=-addp+db
w3 =d¢ w?=d¢

As expressoes obtidas para w;, w, e w3, assim como para ', w? e w3, na observacao

serdo demonstradas no Apéndice deste relatério.

Definicdo 4.15 Sejam wq,w,, w3, 1 — formas invariantes a esquerda, entdo o produto
exterior

dK:a)l/\a)z/\a)3

11



4 Resultados

é uma 3 — forma invariente a esquerda.

Observagdes 4.16 Note que, dK = w1 A wy Aws =daANdbAd¢. Além disso, a menos

de uma constante, dK é a unica 3 — f orma invariante a esqueda em TN.

Observagdes 4.17 Analogamente, podemos definir uma 3 — f orma invariante a direita,
tal que, w' A w?* Aw> =dandbAdd =dK. Além disso, oberva-se também que, a menos

de uma constante, essa é a unica 3 — f orma invariante a direita em M.

As expressdes obtidas para dK nas observagoes e sao obtidas através do

produto exterior diretamente.

L= ¢ onde

Observagoes 4.18 Podemos observar que diferenciando-se a identidade u.u~
u € Meee M éa matriz identidade, obtemos que dK(u™') = —~dK(u). Dai segque que
a 3 — forma definida em é invariante sobre transformagodes a esquerda e direita e
sobre invergdao de movimento. Assim, a chamamos de densidade cinemdtica para um
grupo de movimentos no plano. A densidade cinematica dK é um elemento de volume

invariante no espago dos grupos de movimentos M.

Definicao 4.19 Definimos que a integral sobre dK sobre um dominio em T é a medida

desse conjunto de movimento (medida cinemdtica).

Exemplo 4.20 Considere um retdngulo K = 0ABC e um dominio fixado K, como
mostrado na figura a seguir. Podemos nos perguntar sobre a medida do conjunto
de movimentos u tais que u.K N Ky # 0. Essa medida é a integral de dK = da A
db A d¢ sobre os pontos 0'(a,b) e os angulos ¢ tais que u.K N Ky = 0. Como dK
é invariante a translacdes a direita e a esquerda e inver¢ées de movimento, ndo
precisamos nos preocupar com os outros casos pois todos sdo equivalentes. A titulo
de exemplificagao, se K reduzir-se a um ponto Py(0,0) e colocarmos u.Py = P(a,b),

nods temos:

m(u;uby € Ky) = J

MP()EKO

daAdbAdqb:Z.nJ dandb=2.71F, (4.1)

MPO EKO

onde Fj é a drea de K. A equacdo [4.1|é uma simples, porém util, férmula integral.

Observagoes 4.21 Podemos obter uma outra expressio para a densidade cinematica.

Tome (P;x’,y’") um referencial moével definido pelo ponto P(a,b) e pelo dngulo ¢ que a

12



4 Resultados

X

Figura 4.3: Posi¢des do reangulo K e dominio K

—
reta orientada Px’ faz com o eixo x. Se nos definimos esse referencial movel por essas

novas coordenadas vamos obter uma nova expressio para dK.

Lema 4.22 Sejam (P;x’,y’) um referencial movel, P—x’) uma reta orientada que denota-
remos por G(p,0), onde p é a distdncia da reta Px & origem do sistema de coordena-
das (0;x,v) e ¢ o dangulo desta reta com o eixo x, e t = PH, onde P ¢ o ponto da reta
P—x’> com sua perpendicular que passa por 0. Assim as formulas para a transformagdo

(p,6,t) — (a,b,¢), onde 6 é o angulo do segmento p com o eixo x, sio dadas por:

e
a=p.cosO+t.sin@ (4.2) b=p.sinO—t.cosO (4.3) ¢=0- 5 (4.4)

G

Demonstrag¢do: Obtemos as transformagoes[4.2|e[4.3|diretamente da transformacdo
e de que a = p.cosO + t.cos¢p e b = p.sinB + t.sind. A transformacao [4.3| é obtida
diretamente a partir de observagdes geométricas tomadas as hipoteses. O

Proposi¢do 4.23 Seja a densidade cinematica dada pela Observagio (dK = da A
db A d¢) temos que
dK = dG* A dt, (4.5)

13



4 Resultados

onde G* denota que a reta G deve ser considerada com orientagdo.

Demonstragdo: A demonstragao segue diretamente do Lema diferenciando-se
as equacgdes e e calculando o produto exterior. Além disso, note que
dG*=dp AdO e, assim, obtemos:

dK=dandbAdp =dpAdOAdt =dG" Ndt

O

Proposicao 4.24 Sejam um conjunto convexo K cuja area é dada por F\ e perimetro
Ly e K um segmento orientado de comprimento l. A medida do conjunto de segmentos
congruentes a K que interceptam K, ou seja, o grupo de movimentos aplicados em K de

modo que u.K N Ky = 0, é dada por
m(K,K N KO * @) = 2sz0 + 2ILO

Demonstragdo: Para a demonstragao escolheremos a equacao[4.5|obtida na Proposigao
para densidade cinematica, assim temos que

dK =dG* Adt

Pela Definicao temos que a medida para esse grupo de movimentos é a integral

da a equacgdo acima sobre as restri¢des do seu problema. Portanto,

m(K;KﬂKoim):j dK:J dG*/\dt:ZJ AGAdt  (4.6)
KOKO::@ KmK()i@ KOKO;'&@

Para calcularmos explicitamente essa integral, vamos utilizar a seginte expressao
para dt:
dt =ds+p.do, (4.7)

onde ds representa uma variagdo infinitesimal de da e db na dire¢do ¢. Seja o o

comprimento da corda de K que intercepta K. Logo, substituindo a equagdo[4.7]em

14



4 Resultados

temos que

m(K;KNKyg=0) = 2J dsdG+pd¢>dG)
KNKy=0

~
= 2 dsdG)+(J pd(j)dG)l
| \JGNKy=0 GNKy=0
[ [
= 2 adG)+(J ldG)]
| \JGNKy=0 GNKy=0

r
- 2 0dp/\d9)+(lf dG)]
L GmKoi(Z) GﬂKoi(Z)

(7
= 2 f odp AdO +(l.L0)]
JO GﬂKo:t(D

= 2[(mFo)+ (LLo)]

C

C

C

O
A equagio(4.7]desta demonstracao sera demonstrada detalhadamente no Apéndice

deste relatério.

Exemplo 4.25 Vamos avaliar a medida de um conjunto K, de segmentos orientados,
de comprimento I que nao podem interceptar dois lados ndo-consecutivos e inter-
ceptam exatamente i lados de um poligono convexo K. Seja m, a medida de um
conjunto de segmentos K que ndo interceptam nenhum dos lados de K. Seja m; a
medida de um conjunto de segmentos K que interceptam exatamente 1 dos lados de
K. Seja m, a medida de um conjunto de segmentos K que interceptam exatamente
2 dos lados de K. Temos que m,m; e m, caracterizam todas as possibilidades
de posi¢des dos segmentos de K. Pois, suponha, por absurdo, que consideremos a
medida mj3, de modo que fosse a medida de um conjunto K que interceptam exata-
mente 3 dos lados de K. Mas, por hipdtese, os segmentos ndo podem interceptar
dois lados nao-consecutivos, o que excluio caso em que ocorre m3;. Podemos gene-
ralizar o raciocinio para m,, e, pela hip6tese obteremos que é necessario e suficiente
n <2, n €N, para caracterizar todas as possibilidades de posi¢des dos segmentos de

K. Assim, temos que:

mo+my+m, = 2.7’(.P0 + 2lL0

my + 2.m2 = 4lLO (4 9)
12 ’
1y :72((7{—Ai).cotgA,-—l)
A;

15



4 Resultados

onde A;; representam cada um dos dngulos entre os lados de K;. Resolvendo o
sistema [4.6temos que

my :2.71.F0—2.Z.L0+%Z((n—Ai).cotgAi—l)
Aj
my :4.Z.L0—ZZZ((7Z—Ai).cotgAi—1) (4.10)
A;
My :%Z((R—Ai).cotgAi—l)
Aj

As equagdes utilizadas no sistema serdo demonstradas no Apéndice deste re-
latério.

Algumas férmulas integrais sdo obtidas andlisando como conjuntos convexos se in-
terceptam, o desenvolvimento dessas férmulas ndo sdo necessdrias para a resolugao
do problema que sera proposto na Conclusdo deste relatdrio, entretando sao de
grande importdncia para outros problemas, portanto serdo apresentadas no Apéndice

deste relatorio.

16



5 CONCLUSOES

Nesta secao destacamos um problema importante da Geometria Integral que fez

parte do nosso estudo.

Exemplo 5.1 (Problema da Agulha de Buffon) Considere sobre um plano IT um con-
junto C de retas paralelas que distam D uma da outra. Qual é a probabilidade de
que uma agulha de tamanho / < D, jogada aleatoriamente sobre IT intersepte uma
das retas de C?

P! 5

2. 2

Figura 5.1: Problema Agulha de Buffon

Demonstragao: Tome aleatoriamente um conjunto convexo K de largura constante
igual a D e um conjunto convexo K; contido em K sobre um plano no qual sao
consideradas faixas B de largura a, distantes D uma da outra. Assim K encontrara

uma Unica faixa B e a probabilidade que K; encontre uma destas faixas é

_Li+ma
" L+ma’

onde L e L; denotam os comprimentos de K e K, respectivamente. Como L = 7t.D

entao
_Li+ma

P=Dray

17



5 Conclusoes

O problema da agulha de Buffon pode ser entdo resolvido tomando-se a = 0 (as
faixas reduzme-se a retas) e K; como um segmento de reta de comprimento L; = 2.s.

Consequentemente

O

Exemplo 5.2 (Probabilidade de detectar um dominio convexo por uma procura li-
near) Seja Ko um dominio convexo dentro do qual estd outro dominio convexo K. O
processo de fazer um corte aleatério em K, encontrar K é chamado de procura li-
near. Para o problema em questao suponha K um retdngulo de lados a,b(a > s,b > s),
onde s é o compimento das retas em K. Qual a probabilidade desse reta em K in-

terseptar o retadngulo K.

Figura 5.2: Problema da Procura Linear

Demonstragdo: Suponha que todas as retas que estdo em K, formem um conjunto

S. Por defini¢ao de probabilidade temos que

_ m(S;SNK =0)
p= m(s C Ky) (5-1)
Segue da equagao[4.8/da Proposicao [4.24|que
m(S;SNK #0)=2.7t.F+2s.L, (5.2)

onde F denota a drea de K, s o comprimento das retas de S e L o perimetro de K.

18



5 Conclusoes
Note que, m(s C Ky) = mg, onde m estd bem definido no Exemplo logo

m(SCKo) = my
12
= 2.n.P0—2.l.L0+3;((7(—A,-).cotgA,-—1)

2

= 2.mab-21.(2.a+2.b)+ l—.4. ((7( - z).cotgz - 1)
2 2 2
n) costt/2 1)]

_ . 2 (T .
- 2.[7(.a.b L(2.0+2.b)+1 ((n B

= 2 [n.a.b —2.1.(a+b)+1? (—1)]
= 2.(mab-21(a+b)-1?)

Agora, usando[5.3e([5.2lem [5.1]segue que

B w.F+s.L
P ab—2l(atxb)-12
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6.1 As formas explicitas para L, e R;

De acordo com a Definigao temos que a transformacdo a esquerda é dada por
Ls:u — s-u. Sejam as seguintes matrizes que representam u, uma transformacgdo

arbitraria, e s como na Definicao|4.11

cos¢p —sing a cospy —sindy ay
u=\sing cos¢ b s=|singg cospy by
0 01 0 0 1

Temos entdo que

cos¢p —sing a cos¢pg —singy ag)| (cos¢p —sing a
Ls:|sing cos¢p b|—|sinpy cos¢py bgl|-|sing cos¢p b=
0 01 0 0 1 0 01

cos(¢p+ ¢g) —sin(¢p+Pg) a.cosdpy—b.singg+ag
=|sin(¢ +pg) cos(p+dg) a.singpg+b.cosdpg+ by
0 0 1

Portanto, concluimos o que queriamos, ou seja, a transformacdo a esqueda pode ser

dada explicitamente da seguinte maneira

a —a.cos(¢pg)—b.sin(¢pg)+ag
L b —asin(¢pg)+ b.cos(¢pg) + by

¢ —P+do

Analogamente, temos a transformacao a direita dada por R;: u — u -s. Sejam s e u

da maneira que expressamos acima, logo

cos¢p —sing a cos¢p —sing a) [cospy —singy ag
Rs:|sing  cos¢p b|—|sing cos¢ b|-|singy cos¢py bg|=
0 01 0 01 0 0 1
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cos(Ppo+ @) —sin(pg+¢p) ag.cosdp —by.sind +a
=|sin(po+P) cos(Ppo+¢p) ag.sind +by.cosp+b
0 0 1

Portanto, concluimos o que queriamos, ou seja, a transformagao a direita pode ser

dada explicitamente da seguinte maneira

a —ag.cos(Pp)—b.sin(p)+a
Rss b —ag.sin(P)+b.cos(Pp)+b

¢ —>Pot+¢

6.2 As expressoes para as 1 — formas em M

Para encontrar uma forma explicita para as 1 — formas invariantes a aplicagdo L; :
w(u) — w(s-u) consedere a matriz Q; := u~'du. Vamos verificar que Q; é realmente

invariante a Lj
LQp=(s-u)tdis-u)y=ut st s-du=u"ldu=Q

Assim, os elementos de (); sdao 1 — formas invariantes a aplicagao L;. Para definir
explicitamente os elementos de () considere a matriz u € N, sua inversa e sua

diferencial.

cos¢p —sing a cos¢  sing —a.cos¢ —b.sing
u=|sing cos¢ b -1

u- - =|-sind cos a.sind — b.cos
0 01 ¢ ¢ ¢ ¢
0 0 1

—sing.dp —cos¢p.d¢p da
du=| cosp.d¢ -—sinp.d¢p db
0 0 0

Temos entao que

cos¢ sing —a.cos¢p—b.sinp| (—sing.d¢ —cosp.d¢p da
Qp=uldu=|-sing cos¢ asing—b.cosp |-| cosp.dp -sind.dp db|=
0 0 1 0 0 0
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0 —-d¢ cosdp.da+singp.db
=(d¢ 0 —sin¢p.da+cosp.db
0 0 0

Portanto, concluimos o que queriamos, ou seja, as 1 — formas invariantes a aplicacdo

L; podem ser dadas explicitamente da seguinte maneira

wq =cos(¢p).da+sin(¢p).db
L3S wy = —sin(¢p).da+ cos(¢p.db
w3 = d(P

Analogamente, para encontrar as 1 — formas invariantes a aplica¢do R} : w(u) —
w(u -s) considere a matriz Qg := duu~'. Vamos verificar que Q é realmente invari-

ante a R;
R:QR = d(u ~s)(u -S)_l =du .5.5_1 'll_l — duu—l — QR

Assim, os elementos de QO sdo 1 — formas invariantes a aplicacdo R}. Para definir
explicitamente os elementos de (); considere a matriz u € M, sua inversa e sua

diferencial dadas acima. Temos entao que

—sing.d¢p —cos¢p.d¢p da) ( cos¢p sing -—a.cosp—Db.sing
Qp=duu™ =| cosp.dp —sing.dp db|-|-sing cos¢ a.sing—b.cosdp |=
0 0 0 0 0 1

0 dp bdd+da
=|dp 0 -adp+db
0 0 0

Portanto, concluimos o que queriamos, ou seja, as 1 — f ormas invariantes a aplicagao

R? podem ser dadas explicitamente da seguinte maneira

w!'=b.dp+da
Ri{ w?=-addp+db
w=d¢
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6.3 A equacao@4.7

Considere as equagdes|[4.2]e[4.3]do Lema Vamos considerar o seguinte sistema

{ a=p.cosO +t.sinO (6.1)

b=p.sin@ —t.cosO

Multiplicamos as equagées do sistema por (sinf) e (—cosO), respectivamente.

Assim, obtemos
{ sinf.a = p.cosO.sinO + t.sin’0

—c0s0.b = —p.sinB.cosO +t.cos*0

sin@.a—cos6.b =t (6.2)

Diferenciando a equagédo[6.2| obtemos
dt = sinB.da—cos0.db + (a.cosO + b.sinb).dO (6.3)

Multipliquemos, novamente, as equagdes do sistema [6.1| por (cosO) e (sinb), respec-

tivamente. Assim, obtemos

c0s6.a = p.cos*0 + t.sin6.cosO
sin0.b = p.sin*0 — t.cos0.sin0

cosO.a+sinb.b=p (6.4)

Observe também que podemos considerar infinitésimos da e db na diregdo ¢, tendo
somente como restricao que KNKj # 0 e K é determinado pela reta G. Como mostra

a figura a seguir
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Desta maneira, considerando os movimentos de K. Temos:

da=cos¢.ds
db =sin¢.ds
Utilizando a equacédo[4.4do Lema Temos que
da =sin6.ds
(6.5)
db = —cos0.ds

Multiplicamos as equagdes do sistema por (sinB) e (—cosO), respectivamente.
Assim, obtemos
sin0.da = sin’0.ds
{ —c0s0.db = c0s?0.ds

sin@.da—cos0.db =ds (6.6)

Finalmente, substituindo as equagdes[6.4/e[6.6|na equagdo[6.3|obtemos o que queriamos,
ou seja, a seguinte equagao para dt

dt=ds+p.do,

6.4 O sistema de equacoes 4.9

As equacdes do sistema [4.9serdo detalhadas nas proximas se¢des uma a uma.

6.4.1 Primeira equacao

’mo +my+my= 2.7'C.F0 + 2ZLO

Para entender essa equagao vamos considerar a medida para um conjunto de seg-

mentos orientados que interceptam um conjunto convexo. Essa medida foi obtida
na proposicao e é dada por

ﬂ’Z(K,K N KO * 0) = 2p1F0 + 2ZLO

Para essa medida sdo considerados os segmentos que estdo no interios do conjunto
convexo 1, 0s segmentos que interceptam o bordo 1 vez m; e os que interceptam

2 vezes o bordo m,. Ndo existem segmentos que interceptem o bordo do convexo 3
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vezes justamente pois ele é um convexo. Assim concluimos que
mo+myp+mny= m(K,K N KO * @) = ZPZPO + 2lL0

Portanto, a primeira equagdo do sistema segue como queriamos.

6.4.2 Segunda equacao

’ my + 2.my = 41L0

Para essa equacao vamos enunciar o seguinte exemplo

Exemplo 6.1 Vamos avaliar a medida de um conjunto de segmentos orientados K,
de comprimento /, que interceptam os lados de uma curva poligonal I, de compri-
mento Ly e sem auto-intersec¢des. Pela Definicao temos que a medida para
esse grupo de movimentos € a integral da densidade cinemadtica sobre as restri¢oes
do seu problema. Portanto

m(K;KﬁF:t(Z)):J dK
KNI

Suponha agora que a poligonal I' seja composta de n lados, pela equagao da
Proposicao considerando que temos duas orientagdes para a curva ' e a drea

Fy deT é nula, temos que

J dK = j ndK = 2(2p1F0 + ZZL()) = 4:ZLO
Knr=0 KnI;

Ou seja,
m(K;KNT #0)=4.1.L,

Para a medida obtida no exemplo temos que serdo considerados os segmentos
que interceptam o bordo 1 vez m; e duas vezes os segmentos que interceptam o

bordo 2.mj,, pois a curva I' ndo possui interior logo my = 0. Assim concluimos que
my + 2.m2 = m(K,K NI = (Z)) = 4lLO

Portanto, a segunda equacao do sistema [4.9]segue como queriamos.
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6.4.3 Terceira equacao

2
My = %Z((n —A;).cotgA; - 1)
Aj

Para essa equacao vamos enunciar o seguinte exemplo

Exemplo 6.2 Vamos avaliar a medida de um conjunto de segmentos orientados K,
de comprimento I, que interceptem ambos os lados de um 4dngulo dado A (serd
denotado da mesma maneira o vértice A do angulo e sua medida). Denotaremos por

o a corda que corte o dngulo A por uma reta G que contem K.

Pela Definicao temos que a medida para esse grupo de movimentos é a integral

da densidade cinematica sobre as restrigdes do seu problema. Portanto

m(K;KNAB#0,KNAC=0) = dK

J;< NAB=0,KNAC=0

j  dG'Adt
KNAB#0,KNAC=0

dtdG

2. f
KNAB=0,KNAC=0

2. J (I-0)dG
KNAB=0,KNAC=0

= 2. J ldG—J O‘dG)
KNAB=0,KNAC=0 KNAB=0,KNAC=0

= 2. J ldG—J adG)
o<l o<l

= 2 l.j dp/\dcj)—j odp/\(p)
o<l o<l
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2. (l. ng |AE|d¢ — ng adqu)
z.(z.L”Td¢_L“Td¢)
L "2.Tde

—A
J 2.Td¢ (6.7)
0

onde T representa a area do tridngulo AHM. Para podermos avaliar vamos
tentar construir uma fungao T(¢). Temos que f = 5 — (¢ + A). Assim pela lei dos

senos temos que L L
I |AH| _ |AH]|
sinA  sinf  cos(¢p +A)

(6.8)
Definamos h como a altura do tridngulo AHM com relagio a base AH. Temos que
h
sin(%—cp):T@h:l.coscj) (6.9)

Multiplicando a equacdo [6.8] por h e, posteriormente, utilizando a equagédo te-

mos que
Lh |1ﬁ|.h
sinA — cos(¢p+A)
I.cos¢p 2.T
sinA cos(¢p +A)
12
2.T = SinA.coscj).cos((j) +A) (6.10)

Assim, obtemos uma funcdo T(¢) conveniente, da substitui¢do de em|6.7]segue

que
—A
J 2.Tdg
0

—A lZ
Jo SinA.cosd).cos(({) +A)d
12

= {J-R_A cos.(cosA.cos¢p —sinA.sincj))dqb}
0

SinA

12

n-A n-A
= o {L cosA.cos>pd e — L sinA.sincp.coscf)d(j)}

12

n-A 5 A
= . —si ] : d
Y {COSA L cos“pdd smAL sing.cosg (p}
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n-A n—A
—_— cosA.J; H%deb—sinAJ; sin¢.cos¢d¢}

2 cos [ ~rTi-A n—-A —A
_ ! {OzA'_L 1d¢>+J; cos(z.¢)d¢l—sinAL sin¢.cos¢d¢}

sinA
12 cosA [ Sin(s.qb) n—A . Sinzqf) —A
B (-4 —sinA.
sinA) 2 -(7( )+ 2, sin )
- ,lz COSA.—(n_A)jLM —sinA.m
SinA 2 i 2 5
l2
T 2sinA [(N—A)-cosA—sinA.coszA—sinA.sin2A]
l2
= 5inA((n—A).cotA—l) (6.11)

Segue da equacdol[6.7]e da equagao que

2

m(K;KNAB#0,KNAC =0) = ((t—A).cotA—1)

sinA
Para a medida obtida no exemplo temos que serdo considerados somente os

segmentos que interceptam o bordo duas vezes, assim sendo um convexo cujo bordo
¢ uma poligonal, para m, teremos um somatério de cada d4ngulo sobre a medida
obtida no exemplo Assim concluimos que

_ _ 12
my = ;m(K;K NAB=0,KNAC = 0) = 3Z((n —A;).cotgA; 1)

i Ai

Portanto, a terceira equagao do sistema segue como queriamos.

6.5 Algumas fémulas integrais

Proposicao 6.3 Sejam K; um conjunto convexo de area F, e perimetro Ly e Ky um con-
junto convexo de area F e perimetro Ly. A posigio de Ky é definida pelas coordenadas
de P| = (x1,v1), tal que P, € Ky, e pelo angulo ¢, que é o angulo da diregdo P|A com a
dire¢do Pyx. Tomando a densidade cinematica de K; tal que dKy = dx; Ady; Ad¢p. Temos
entdo que

m(Kqy; Ky NKy=0)=2.7t.(Fg+ F1)+ Log.Lq (6.12)

Demonstragdo: Seja u € M um movimento tal que u-K; NKj = 0. Queremos calcular

a medida das posi¢oes de K;, onde K; intersepta K,. Seja dK; = dx; Ady; Ad¢
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a densidade cinemadtica referente ao convexo K;. Pela Defini¢do temos que a
medida para esse grupo de movimentos é a integral da densidade cinematica sobre

as restri¢cdes do seu problema. Portanto

m(Kl;KlﬁKoiw):J dKl :f dxlf\dyl/\d(j)
Kl nKoiw KlﬂKoi(D

Seja dP, = dx; A dy;, note que j dP, = Fy;, onde Fy; é a drea mista de Min-
Kan()i@
kowski. De acordo com com [3] capitulo 1 se¢do 3 temos que Fy; = Fy + F; + 2.F,,

onde Fj, é a drea mista de Kj e K;. Portanto

2.1t
I dxi Ndy, Nd = dPl/\d(P:f (Fo+F1 +2.Fy)d¢
KlmK()i@ KlﬂKOI(Z) 0

2.7
1
De acordo com com [3]] capitulo 1 secdo 3 temos também que f Fodo = E-LO-LI-
0

Portanto

2.1t
J‘ (F0+F1 +2.F61)d¢:2.T(.(F0+P1)+L0.L1
0

Portanto, a medida de todas posigdes de um conjunto convexo Ky nas quais ele intercepta

outro conjunto convexo fixado K é

m(Ky; Ky NKy=0) = J dKy =2.1t.(Fy+ F)+ Lo.Ly
KlﬂKoiw
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Exemplo 6.4 Considere as mesmas condi¢oes da Proposicao Se K; € um seg-
mento de comprimento /, entdo F; = 0 e L; = 2./. Assim a equagao produz a

equacao

Exemplo 6.5 Tome K| e K; dois dominios planos, ndo necessariamente convexos, de
areas F e F{, respectivamente. Assuma que K| esta fixo e K; esta em movimento.
Tomemos dK; a densidade cinematica de K;. Se P(x,y) é um poto no plano tal que

PeKyNK;edP=dxAdysuadensidade. Vamos considerar a integral

I:m(P,Kl;PEKOHKl):J dP/\dKl
PGKomKl

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar P fixo,

entao temos

I = f dp /\dKl
PEKomKl

[ ar| ik
PeKy PeK,

= FO.J‘ dxNdyAd¢
PEKl

= 2.71.F0.J dx ANdy
PEKI

= ZRPOJ dP
PekK;

= 2.7'(.F0.F1 (613)

Podemos também fixar Ky, entao teriamos

I - JA dP A dKl - J deKl - J fOldKll (614)
PEKoﬁKl PEKoﬂKl PEKonKl

onde fy; é a drea de Ky N K;. Logo, por e

j fOldKl == 27'(POF1 (615)
PEKoﬂKl
Exemplo 6.6 Tome K, e K; dois dominios planos, ndo necessariamente convexos,
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de areas F e F;, respectivamente, de modo que suas fronteiras sdo curvas de com-
primento finito Ly e L;, respectivamente. Tome a(sy) e a(s;) pontos de dKj e JKj,

respectivamente. Vamos considerar a integral

]1 = I dSO A dKl
a(sg)ekKy

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar a(sg)

fixo, entao temos

]1 = f dSO AN dKl
a(so)eK,

J dSoj dKl
8K0 a(so)€K1
= Lo.f dxNdy Nd¢
a(sg)ekKy
= 2.7'(.L0.J. dx ANdy
a(So)GKl

= ZTCLOJ dP
a(sp)eKy

= 2.7’(.L0.P1 (616)

Podemos também fixar K, entao teriamos

]1 = f dSO AN dKl = J dSOdKl = J l(ndKl, (617)
&(So)EKl (X(So)eKl 0((50)6[(1

onde ly; é o comprimento da curva dKy N Kj. Logo, por e
j l(ndKl :]1 = 2.T(.L0.F1 (618)
a(sp)eK;

Vamos considerar agora a seguinte integral

]2 = J\ dSl A dKO
(X(Sl)EKO

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos deixar a(sy)
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fixo, entao temos

]2 = J dSl/\dKO
a(s1)ekKy

J dSl j dKO
8K0 a(sl)eKo
= LI.J‘ dxNdy Nd
a(sy)eKy
= 2.7{.L1.J dx ANdy
OK(SI)GKO

= 27’(L1J dpP
(X(S])EKO

= 2.TZ.L1.P0 (619)

Podemos também fixar K, entdo teriamos

]2 = J dSl A dKO = J dsldKO = J llOdKO’ (620)
a(51)€K0 a(sl)eKO lX(Sl)EKO

onde /1 é o comprimento da curva dK; N K,. Logo, por e
J l]odKO = ]2 = 2.7'(.L1.F0 (621)
a(s1)eky
Mas para a equagao podemos simplismente fazer uma mudanca de indices, ou
seja, para podemos trocar K por K; e o inverso, pois ndo ha distin¢oes entre os
dominios. Portanto, torna-se

JA ZlOdKl :]2 = 2.7(.L1.PO (622)
a(sg)ekKy

Finalmente, somando e temos que

J llOdKl +J l01dK1
a(sp)eKy a(sp)eKy

OC(So)EKl

onde Ly, é a fronteira de Ky N Kj.

2.7'(.L1.F0 + 2.7'(.L0.F1

2.ﬂ.(L1.F0+L0.P1), (623)

Exemplo 6.7 Tome K, K; e K, trés comjuntos convexos fechados no plano. Quere-
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mos calcular a medida m(K;, Ky; Ko N Ky N K, # 0). Sejam dK; e dK, as densidades
cinemdtica de K; e K;, respectivimanete. Suponha K|, fixo, pela Definicao te-
mos que a medida é a integral da densidade cinemdtica sobre as restricdes do seu

problema, portanto

m(Kl,Kz;KomKlﬂKzi(z)):J dKl/\dK2
KoﬂKlﬂKzim

mantendo K; também fixo temos que pela equagao da Proposicao

J- dKl /\dKZ = J [2.7’(.(1:2+f01)+L2.L01]dK2
KomKl ﬂKzi@ KomKlszim

= 2ﬂF2J dKl +2.N.J fOldKl +L2.J LOldKl
KoNK; NK,#=0 KoﬁKlﬂKzi(D KynK; NK,=0

pelas equagdes|[6.12}]6.15|e6.23|temos que

Z.H.PQ.J dKl +2.T(.J fOldKl +L2.J LOldKl
KoNK; NK,=0 KoﬂKlﬂKzim KoNK; NK,=0

= 2.7'(.F2 (27’((1:0 + F]) + LO'Ll) + 27'((27'(FOF1) + LZ (27'((F1L0 + L1P0))
= (2.7'()2.(1:0.1:2 + FO'Fl + FlF — 2) + 2.7'(.(F0.L1.L2 + Fl'LO'LZ + FZ'LO'LI)

Exemplo 6.8 (Valores médios e cobertura) seja Ky um conjunto convexo de area F,
e perimetro Ly. Sejam Ki,Kj,...,K, n conjuntos convexos de area F e perimetro L.
Suponha que K; N Ky # 0. Seja f, a drea de Kj que tem cobertura por exatamente
r conjuntos K;. Vamos considerar a integral sobre todos os pontos P € K, que sdo

cobertos exatamente por r conuntos K;.
I, =JdK1 A---ANdK, ANdP

Vamos calcular essa integral de duas maneiras. Primeiramente, vamos manter P

fixo, entdo temos
I, = JdKlA--~AdKnAdP

= J[z.n.(Po +F)+L.Ly]dKy A--- ANdK,, AdP
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r

= | [(2.nF)+(2.n.Fy+L.Ly)|dKy A+~ AdK, AdP

r

= | [(2.mF)+(2.m.Fy+ L.Ly)].[(2.70.F) + (2.7.Fy + L.Lg)|dK3 A -+ AdK,, AdP

r

= [(27'CF)+(2T(F0+LLO)]ndP

)

- 1:)(2.71.F)r.(2.7z.130 +L.Ly)""dP

= (7: (2.n.P)T.(2.n.P0+L.L0)n—rJdp

- (’: (2.70.F) .(2.70.Fy + L.Ly)"".E, (6.24)

Por outro lado, se deixarmos Ki, K, ..., K, fixados, temos que
I, = J-dKl A--ANdK, AdP = JdeKl...dKn = Jf,dKl...dKn (6.25)
Portanto, de e segue que
fﬂdKl dK, =1, = (:l)(2.7z.F)’.(2.n.F0 +L.Lo)"".F,

Se quisermos calcular o valor esperado para f,, temos que

m(Kl,...,Kn;ﬂ(rrz) K;NKy# @)
m(K; K, NKy #20)...m(K,; K, N Ky = 0)
(") (2.7.F)".(2.1.Fy + L.Ly)"".F,

[2.70.(F + Fy)+ L.Lo]"

E(f:)
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