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RESUMO

Baseados no artigo “Total curvature and the isoperimetric inequality in Cartan-Hadamard
manifolds”, de Mohammad Ghomi e Joel Spruck [G521], estudamos uma férmula de
comparagdo para a curvatura total de conjuntos de niveis em variedades Riemannianas.
Em particular, para os casos em que a variedade tem curvatura seccional constante, ou
para bolas geodésicas em variedades com curvatura seccional limitada superiormente
por uma constante real negativa. Com o método de Kleiner generalizado, esta for-
mula de comparacdo foi aplicada ao problema isoperimétrico em espagos de curvatura

nao-positiva de modo a obter uma versdo equivalente para a conjectura de Aubin.

Palavras-chave: Variedades de Cartan-Hadamard, geometria Riemanniana, geometria

métrica, perfil isoperimétrico
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ABSTRACT

Based on the article “Total curvature and isoperimetric inequality in the Cartan-
Hadamard manifolds”, by Mohammad Ghomi and Joel Spruck [GS21], we study
a comparison formula for the total curvature of level sets in Riemannian manifolds.
In particular, for cases where a manifold has a constant sectional curvature, or for
geodesic balls in a manifold with a sectional curvature bounded above by a negative real
constant. With the generalized Kleiner method, this comparison formula was applied
to the isoperimetric problem in spaces of non-positive curvature in order to obtain an

equivalent version for the Aubin conjecture.

Keywords: Cartan-Hadamard manifolds, Riemannian geometry, metric geometry,

isoperimetric profile
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INTRODUCAO

Grosso modo, uma variedade de Cartan-Hadamard M é uma variedade Riemanniana
completa, simplesmente conexa e com curvatura seccional ndo-positiva. Uma hipersu-
perficie convexa (fechada) I' C M é a fronteira de um conjunto compacto e convexo
com interior ndo vazio. Nas condi¢des da Definicdo 3.22, se I' é de classe Cl1 sua
curvatura de Gauss-Kronecker GK esta bem definida em quase todo ponto, de modo
que sua curvatura total é G(I') = [.|GK|dc, onde do é a forma de volume para I'. Neste

contexto, surgem os dois problemas a seguir.

Problema 1.1. Para M uma variedade de Cartan-Hadamard n-dimensional e T C M uma

hipersuperficie convexa de classe C1'!, vale a sequinte desigualdade
G(T) > vol(S" ™), (1)
onde S"~1 denota a esfera unitdria em R" e vol é o volume?

A resposta para o Problema 1.1 é sim quando n = 2,3, devido ao Teorema de Gauss-
Bonnet e a equagdo de Gauss. Mas, para n > 4 o problema ainda estd aberto. A
principal motivacdo para o estudo do Problema 1.1 é sua conexdo com o problema

isoperimétrico para variedades de Cartan-Hadamard, a saber:

Problema 1.2. Para M uma variedade de Cartan-Hadamard n-dimensional e () C M um
conjunto limitado, vale a sequinte desiqualdade isoperimétrica

per(B")"

WUOZ(Q)nil, (2)

per(Q)" >

onde B" é uma bola unitdria em R" e per é o perimetro, com igualdade somente se () é uma bola

em R"?

O Problema 1.2 é conhecido como a conjectura de Cartan-Hadamard que, em di-

mensdo qualquer, foi introduzida em 1976 por Thierry Aubin [Aub76] e poucos anos



INTRODUCAO

depois por Mikhail Gromov [Mik81] [Miko1], Yuri Burago e Viktor Zalgaller [BV88].
Em dimenséao 2, esta conjectura foi verificada como vélida em 1926 por André Weil
[Beroz] e redescoberta em 1933 por Beckenbach e Rad6 [BR33]. Em dimensdo 3 e 4 a
conjectura foi provada por Bruce Kleiner [Klegz2] em 1992 e Chris Croke [Cro84] em
1984, respectivamente.

Nesta dissertacdo de mestrado, estudamos o artigo de Mohammad Ghomi e Joel
Spruck [GS21], que foi motivado pelo trabalho de Kleiner [Kleg2], no qual mostra-se
que para n = 3, a desigualdade para a curvatura total (1) implica a desigualdade
isoperimétrica (2). Em [GS21], Ghomi e Spruck provaram que esta implicacdo é vélida
no caso n-dimensional. Ou seja, uma resposta afirmativa para o Problema 1.1 implica
uma resposta afirmativa para o Problema 1.2.

Esta dissertacdo de mestrado estd organizada como a seguir. No Capitulo 2, recor-
damos algumas defini¢des importantes da geometria Riemanniana e fixamos notagao.
Além disso, revisamos um conjunto de fatos basicos sobre coordenadas normais e o
Lema de Gauss generalizado. Por fim, estudamos a regularidade da aplicagdo exponen-
cial.

No Capitulo 3, estudamos as ferramentas necessarias para provarmos o Teorema 4.1;
em particular, na Secdo 3.1 apresentamos alguns fatos bdsicos sobre a regularidade da
funcdo distancia em variedades Riemannianas. Na Secdo 3.2, discutimos algumas nogdes
de convexidade em variedades de Cartan-Hadamard e mostramos que é suficiente
estabelecer a desigualdade (1) para hipersuperficies com fungdo distancia convexa.
Dedicamos as Segdes 3.3 a 3.5 para o estudo de uma férmula de comparagdo, com a qual
prova-se que a curvatura total positiva do envoltério convexo de uma hipersuperficie
ndo pode ser maior que a curvatura total positiva da prépria hipersuperficie.

Finalmente, no Capitulo 4, é estabelecida a conexdo entre os Problemas 1.1 e 1.2.



PRELIMINARES

2.1 DEFINICOES BASICAS

As variedades Riemannianas serdo o espaco ambiente no qual estudaremos os resultados
obtidos por Mohammad Ghomi e Joel Spruck no artigo “Total curvature and the
isoperimetric inequality in Cartan-Hadamard manifolds” [G521]. Assim, a seguir

definimos as métricas Riemannianas e as variedades Riemannianas.

Defini¢do 2.1. Uma métrica Riemanniana de classe Ck, 1 < k < oo, em uma variedade
diferencidvel M é uma lei que faz corresponder a cada p € M uma aplicagio gp : TyM X TyM —
R satisfazendo, Vu,v,w € TyM e VA € IR,

1. gp(u,v) = gp(v, u).

2. gp(u+v,w) = gp(u, w) + gp(v, w).

3. §p(Au,v) = Agy(u,v) = gp(u, Av).

4. gp(u, u) > 0.

5. §p(u,u) =0 <= u=0.

6. Se X e Y sido campos diferencidveis em um aberto U C M, entdo a fungio:

uUucM™M-—N~R
p — gp(X(p), Y(p))

é de classe CK, 1 < k < oo, em U.

Definicdo 2.2. Uma variedade Riemanniana n-dimensional e classe CK, 1 < k < oo, é um

par (M, g) onde
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1. M é uma variedade diferencidvel de classe C*.

2. § é uma métrica Riemanniana em M.

Em uma variedade Riemanniana podemos construir uma func¢do distancia, que
serd induzida pela métrica Riemanniana da variedade, de forma que a variedade
Riemanniana juntamente com esta distincia seja um espago métrico. Além disso,

definimos também a distancia entre dois conjuntos.

Definicao 2.3. Uma aplicagdo diferencidvel ¢ : I — M de um intervalo aberto I C R em uma
variedade diferencidvel M chama-se uma curva. A restri¢io de uma curva c a um intervalo

fechado [a, b] C I chama-se segmento.

Definicao 2.4. Sejam (M, §) uma variedade Riemanniana e c : [a,b] — R um segmento.

Definimos o comprimento do segmento c por

b
HOR RVERNEIORION

Definicao 2.5. Sejam (M, §) uma variedade Riemanniana e p,q € M pontos de M. Definimos

a distancia induzida pela métrica g por
= = 1 f
d(p,q) = dg(p, q) At I(c),

onde ¢ € Apg se c: [a,b] — M é um segmento de curva em M com c(a) = p e c(b) = q.

Definicao 2.6. Sejam (M, g) uma variedade Riemanniana e X,Y C M subconjuntos de M.

Definimos a distancia entre conjuntos por
dX,Y)=inf{d(x,y):x € X,y € Y}.
Além disso, fixado um subconjunto X C M, definimos a distancia ao subconjunto X por
dx() =d(X,).

Além de uma fungdo distancia, podemos construir outras ferramentas geométricas
em variedades Riemannianas; uma delas é o volume de regides. Sejam (M, g) uma
variedade Riemanniana, p € M um ponto e (U, x) um sistema de coordenadas de M

tal que p € x(U). Considere uma base ortonormal {ey,...,e,} em Ty M e, escrevendo

Xi(p) = %(p) na base {e;}, isto &, Xi(p) = L, aijej, obtemos que
1

ik(p) = (Xi, Xi) (p) = Y asjapi (e, e1)(p) = Y _azjady = Y ajja; = (aa” )y,
il il j
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donde segue-se que det(g;;)(p) = det(aa’) = det(a)®>. Com isso, através da férmula
para calcularmos o volume de paralelepipedos em R”, podemos calcularmos o volume
vol(X1(p), . .., Xu(p)) do paralelepipedo formado pelos vetores X;(p), ..., Xu(p) em T, M,
pois vol(X1(p), . .., Xu(p)) = det(a)vol(ey, . .., e,) = det(a), onde vol(ey, ..., e;) é o volume
do paralelepipedo formado pelos vetores ey, . .., e, em IR". Portanto, utilizando somente

a expressdo da métrica Riemanniana no sistema de coordenadas (U, x) temos que

vol(X1(p), - - -, Xu(p)) = 1/ det(gij)(p)-

Com isso, definimos a seguir o volume de regides em variedades Riemannianas.

Definicao 2.7. Sejam (M, §) uma variedade Riemanniana e R C M um regido, isto é, um
subconjunto aberto e conexo de M, cujo fecho é compacto. Suponha que R estd contida em uma
vizinhanga coordenada x(U) de um sistema de coordenadas (U, x), e que a fronteira x'(R) C U

tem medida nula em R". Definimos o volume vol(R) de R pela integral em R"

vol(R) = /xl(R) \/det(gipdxy ... dxy. (3)

Uma construgdo importante para o estudo de variedades diferencidveis é a de conexdo
afim, a partir desta construgdo podemos definir uma estrutura igualmente importante
em variedades diferencidveis, o paralelismo. A seguir definiremos uma conexao afim

em uma variedade diferencidvel.

Definicado 2.8. Sejam M uma variedade diferencidvel, X(M) o conjunto dos campos de classe
C*® em M e D(M) o anel das fungdes reais de classe C*° em M. Definimos uma conexao afim

em uma variedade diferencidvel M como uma operagio

vV X(M) x X(M) — X(M)
(X,Y) s VxY

tal que
1. Vx(Y+Z)=VxY+VxZ,
2. VixsgyZ = fVxZ+gVyZ,
3. Vx(fY) = fVxY + X(f)Y,

onde X,Y,Z € X(M) e f,g € D(M).
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Na defini¢cdo de conexdo afim podemos tomar as devidas restri¢des para um subcon-

junto aberto U C M e teremos
Vi X(U) x XU) — xU).

Assim, podemos obter sua expressdo em coordenadas e, com isso, motivaremos a defi-
nicao dos simbolos de Christoffel. Tome (U, x) um sistema de coordenadas; escrevemos
X=Y,xX;eY =Y,y;X;, donde temos

VxY = Vy X (Z%’Xz')
= ijij (Zyixi>
] 1
= Zx] (Z (X](yz)Xl + yiVXin>> (4)
j

i
Com isso, podemos definir os simbolos de Christoffel.
Definigdo 2.9. Seja M uma variedade diferencidvel e considere (U, x) um sistema de coordenadas

em M e uma conexio afim V em U. Definimos os simbolos de Christoffel Fi-‘]., 1<i,j,k<mn,

de V no sistema de coordenadas (U, x) por
Z k

Da Defini¢do 2.9 concluimos que Ffj sao funcdes diferenciaveis e de (4) obtemos a

expressdo em coordenadas de uma conexdo afim:

VxY = ij (Z (Xj(yi)Xi + yiVX]-Xi>>
j

1

=) % (Xj(yz’)xi +Yi ;T?jxk)

Ji

= ]ZZ (x]X](yl)Xl + xjyi ;I’ZXQ
- ; (; X X(yi) + ;x]-yirﬁf]) X

A partir da escolha de uma conexdo afim em uma variedade diferencidvel temos uma
derivada de campos de vetores ao longo de curvas. A seguinte proposi¢do mostra esse

fato.
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Proposicao 2.10. Seja M uma variedade diferencidvel com uma conexdo afim V. Entdo existe

uma inica lei que associa a um campo vetorial V. = V(t) ao longo da curva diferencidvel
.. DV . . .
c: I — M, um outro campo vetorial —— ao longo de c, denominado derivada covariante de

dt
V ao longo de c, tal que:

1. —(V+W)= [c)l:/ + DdI;V onde W é um campo de vetores ao londo de c.

2. ( fV) = f f —_ onde f é uma funcdo diferencidvel em I.

3. Se V é induzido por um campo de vetores Y € X(M), isto é, V(t) = Y(c(t)), entdo
DV _v
T Ver

Demonstragido. A demonstracdo pode ser vista em [dC15, Proposigdo 2.2, p.57]. [

Obtemos da Proposicdo 2.10 a expressdo cldssica para a derivada covariante
DV dvk
@ L { Zru it }

Observe que T difere da derivada usual no espaco euclidiano por termos que envol-
vem os simbolos de Christoffel.

Com isso, temos uma nog¢ado natural de paralelismo.

Definicdo 2.11. Seja M uma variedade diferencidvel com uma conexdo afim V. Um campo

vetorial V = V(t) ao longo de uma curva c : I — M é chamado paralelo (com respeito a V)

DV
quando e 0, para todo t € L.

Com esta definicdo podemos construir o transporte paralelo de vetores ao longo de

curvas como segue na proposicdo abaixo.

Proposicao 2.12. Sejam M uma variedade diferencidvel com uma conexdo afim V,c: 1 — M
uma curva diferencidvel em M e Vo um vetor tangente a M em c(to), to € 1, isto é, Vo € Ty M.
Entdo existe um 1inico campo de vetores paralelo V = V(t) ao longo de c, tal que V(ty) = Vj

(V(t) é chamado de transporte paralelo de Vj ao longo de c)
Demonstragio. A demonstragdo pode ser vista em [dC15, Proposicdo 2.6, p.58-59]. [

Note que a defini¢do de conexdo afim foi feita em um contexto de variedades dife-

renciaveis, isto é, ndo depende da métrica Riemanniana. Assim, queremos relacionar
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a conexdo afim de uma variedade diferencidvel com a métrica Riemanniana de uma
variedade Riemanniana. Para isso, faremos as defini¢des de compatibilidade da conexdo

com a métrica e de conexdo simétrica a seguir.

Definicao 2.13. Seja (M, g) uma variedade Riemanniana com uma conexdo afim V. A conexio

é dita compativel com a métrica g, quando
X(Y,Z)=(VxY,Z)+(Y,VxZ),
com X,Y,Z € X(M).

A partir da definicdo de compatibilidade da conexdo com a métrica em variedades
Riemannianas podemos estabelecer algumas equivaléncias desta defini¢do com relacdo

a derivada covariante, como na préxima proposicao.

Proposicao 2.14. Seja (M, g) uma variedade Riemanniana com uma conexdo afim V. As

seguintes afirmagdes sdo equivalentes:
1. 'V é compativel com a métrica g.

2. Para todo par V e W de campos de vetores ao longo da curva diferencidvel ¢ : I — M

d DV DW
E<V’W> = <W’W> + <V,7>,t el

3. Para toda curva diferencidvel c e quaisquer pares de campos de vetores paralelos Py e P, ao

tem-se

longo de c, tivermos

(Py, P,) = constante.

Demonstragido. A demonstracdo pode ser vista em [dC15, Proposicdo 3.2, p.59-60 e

Corolério 3.3, p. 60]. O

Definic¢do 2.15. Seja M uma variedade diferencidvel com uma conexdo afim V. Dizemos que a

conexdo afim NV é simétrica quando
VxY - VyX =[X,Y],
para todo X,Y € X(M).

A partir de uma conexdo afim simétrica em uma variedade diferencidvel podemos

obter uma condicdo acerca dos simbolos de Christoffel desta conexdo, isto é, seja M
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uma variedade diferenciavel com uma conexao afim simétrica V. Considere (U, x) um

sistema de coordenadas em M, entdo para todo i,j =1,...,n, temos que
Vx, X;— Vx Xi = [X;, Xj] =0,
ou ainda,

k k
It =T¥,

comk=1,...,n.

Com as defini¢des de compatibilidade da conexdo com a métrica e de uma conexdo
simétrica podemos construir uma tinica conexdo afim em uma variedade Riemannina,
chamaremos-a de conexdo Riemanniana, e as condi¢des para para que isso ocorra sao

descritas no Teorema de Levi-Civita a seguir.

Teorema 2.16 (Levi-Civita). Dada uma variedade Riemanniana (M, §) existe uma iinica

conexdo afim V em M, chamada de conexao Riemanniana, satisfazendo as condigoes:
1. V é simétrica.
2. V é compativel com a métrica Riemanniana.
Demonstragio. A demonstragdo pode ser vista em [dC15, Teorema 3.6, p.61-62]. O

Com este teorema podemos obter a expressdo para os simbolos de Christoffel da
conexdo Riemanniana de uma variedade Riemanniana (M, g). Considere (U, x) um
sistema de coordenadas em M. Das condi¢des de simetria e compatibilidade com a

métrica dadas pelo Teorema 2.16 para a conexdo Riemanniana temos que

(VxXi, Xi) = {X (Xi, Xi)) + Xi (X, Xj)) — Xie ((Xj, X5))
—<[ i Xil, Xi) — ([Xi, Xil, Xj) — ([Xi, Xj1, X) }

1
=3 (9igkj + 9;gik — Okiji) - (5)

d
onde g;; = (X;, Xj) e 9; = I Por outro lado, obtemos que
1

(Vx, Xi, Xy) = <2r5]’Xl/Xk>
= Zr (X;, Xi)

= ; T} (6)
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Como a matriz (g;;) admite uma inversa (gif ), teremos de (5) e (6) que

m 1 "
;rf.].glkgk = 5 (9i8k + 98k — %g;i) 8"
1 m
D Tidm = 5 (3igwj + 8k — 0kgji) 8"
l
1
Lij = 58"’" (9ig; +9;gik — Ingji) 7

Podemos também definir conceitos cldssicos, como o campo gradiente de uma fungao,
a hessiana de uma fungdo e a divergéncia de um campo, para o ambiente de variedades

Riemannianas como a seguir.

Definicdo 2.17. Sejam (M, §) uma variedade Riemanniana, X € X(M)e f € D(M). Definimos

o gradiente de f como o campo vetorial grad(f) em M dado por

(grad(f)(p), v) = dfp(v),
ondep € Mev € T,M.

Definicdo 2.18. Sejam (M, g) uma variedade Riemannina, X € X(M) e f € D(M). Defina o

operador hessiana de f como

V2(F)(X) = Vx(grad(f)).

Definicdo 2.19. Sejam (M, §) uma variedade Riemanniana, X,Y € X(M) e f € D(M). Defina

a hessiana de f como

Hess(f)(X,Y) = X(Y(f)) — (VxY)(f).

Podemos relacionar os conceitos acima, isto é, consideremos (M, ¢) uma variedade
Riemanniana, X,Y € X(M) e f € D(M). Segue-se diretamente das Defini¢des 2.17, 2.18

e 2.19 que
Hess(f)(X,Y) = (Vxgrad(f),Y) = (VA(/)(X),Y). ®)
De fato,

(Vxgrad(f),Y) = X(grad(f),Y) — (grad(f), VxY)
= X(df(Y)) —df(VxY)
= X(Y(f)) — VxY(f)
= Hess(f)(X,Y).
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Definicao 2.20. Sejam (M, g) uma variedade Riemanniana, X € X(M) um campo de vetores
em M e p € M um ponto arbitrdrio em M. Considere a aplicagio Tx : T,M — T,M dada por
Tx(Y(p)) = VyX(p). Definimos a divergéncia de X como a funcio div,(X) : M — R dada
por divy(X) = trace(Tx).

Observacao 2.21. Para a divergéncia de um campo podemos obter uma expressio em coorde-
nadas. Sejam (M, g) uma variedade Riemanniana, X € X(M) um campo de vetores em M e
p € M um ponto arbitrdrio em M. Considere E;, i = 1,...n, um referencial ortonormal de

T, M. Note que, com respeito a essa base ortonormal, a divergéncia de X é dada por:

div,(X) = trace(Tx) = Y (Vg X, Ei)(p).
i=1

2.2 GEODESICAS E A APLICACAO EXPONENCIAL

Dois conceitos fundamentais para a geometria sdo o de geodésica e o de aplicagdo

exponencial. Ambos os conceitos estdo relacionados e os exibiremos a seguir.

Definigado 2.22. Seja (M, §) uma variedade Riemanniana. Uma curva parametrizada vy : I — M
D (dvy . L
¢ uma geodésica em to € I se — i\ )" 0 no ponto ty; se 7y é geodésica em t, para todo t € I,

dizemos que vy é uma geodésica. Se [a,b] C I ey : 1 — M é uma geodésica, a restricio de 7y a

[a, b] é chamada segmento de geodésica ligando y(a) a y(b).

Lema 2.23. Sejam (M, §) uma variedade Riemanniana, -y : I — M uma geodésica em M. Entdo
existe um vinico campo G em T M, chamado campo geodésico e cujo fluxo chamamos de fluxo

geodésico, cujas trajetérias sio da forma t — (y(t), ' (£)).
Demonstragio. A demonstragdo pode ser vista em [dC15, Lema 2.3, p.7o-71]. O

Proposicdo 2.24 (Existéncia e unicidade de geodésicas). Sejam (M, g) uma variedade
Riemanniana e p € M. Entdo existem um aberto V.C M, p € V, niimeros 6 > 0ee; >0e
uma aplicagdo de classe C*

v:1—9,0[xU — M,

onde U = {(q,v) € TM : g € V,v € T;M,|v| < &}, tais que a curva t — 7(t,q,v),
t €] —9,06[, é a tinica geodésica de M que no instante t = 0 passa por q com velocidade v, para
cada g € V e cada v € TyM com |v] < €.

11
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Demonstragido. A demonstragdo pode ser vista em [dC15, Proposicdo 2.5, p.71]. O

Para a construcdo da aplicagdo exponencial precisaremos provar algumas proprieda-
des das geodésicas. Uma dessas propriedades é que podemos aumentar a velocidade
de uma geodésica diminuindo o seu intervalo de defini¢do, ou vice-versa, e isto é,

essencialmente, o que afirma o préximo lema.

Lema 2.25 (Homogeneidade de uma geodésica). Sejam (M, §) uma variedade Riemanniana

e y(t,q,v) a geodésica definida no intervalo | — 6, §[. Entdo a geodésica y(t,q,av),a € R,a > 0,

6 0
estd definida no intervalo ] e [ e
v(t,q,av) = y(at, q,v).
Demonstragio. A demonstra¢do pode ser vista em [dC15, Proposigdo 2.6, p.72]. O

A outra propriedade desejada é que podemos tornar o intervalo de defini¢do de uma
geodésica uniformemente grande em uma vizinhanga do ponto de partida, como a

seguir.

Proposigao 2.26. Sejam (M, g) uma variedade Riemanniana e p € M. Entdo existem uma

vizinhanga V de p em M, um niimero € > 0 e uma aplicagio de classe C,
v:1-2,2[xU— M,

onde U= {(q,w) € TM:q € V,w € T;M, |w| < e} tais que t — (t,q,v),t €] —2,2[, éa
tinica geodésica de M que no instante t = 0 passa por q com velocidade w, para cada q € V e

cada w € TyM, com |w| < e.
Demonstragido. A demonstragdo pode ser vista em [dC15, Proposicdo 2.7, p.72]. O

Para (M, g) uma variedade Riemanniana, p € M um ponto arbitrario e v € T,M
temos que a associagdo v — (t, p, v) define uma aplicagdo do fibrado tangente TM
no conjunto das geodésicas de M. Além disso, como uma consequéncia do Lema 2.25,
podemos definir uma outra aplicagdo de um subconjunto do fibrado tangente para M,

que associa a cada reta saindo da origem de T, M a geodésica, da seguinte maneira.

Definicao 2.27. Sejam (M, g) uma variedade Riemanniana, p € M e um subconjunto do
fibrado tangente U C TM dado por U = {(q,w) € TM :q € V,w € T,M, |w| < €}, onde V é
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uma vizinhanga de p em M e € > 0 um niimero. Considere t — y(t,q,v),t €] — 2,2[, a inica

geodésica dada pela Proposigdo 2.26. Chamamos a aplicacdo exp : U — M dada por

exp(q,v) =v(1,4q,0), (q,v) e U,
de aplicacdao exponencial em U.

Observacao 2.28. Note que a aplicacdo exponencial dada pela Definicdo 2.27 é diferencidvel,
pois a geodésica y é dada pelo Teorema de Existéncia e Unicidade de EDO’s, o que garante a
diferenciabilidade com relagiio aos pardmetros. Além disso, a restrigdo da aplicagio exponencial a

um aberto do espago tangente, isto é,
expg : B:(0) C T,M — M
serd dada por expq(v) = exp(q, v). Assim, expy € diferencidvel e exp,(0) = g.

Uma das propriedades mais importantes da aplicacdo exponencial é que existe
uma vizinhanca da origem do espaco tangente na qual a aplicagdo exponencial é um
difeomorfismo sobre sua imagem e, basicamente, essa propriedade que nos possibilitard
construir as coordenadas normais posteriormente. Assim, a préxima proposi¢do nos

garante essa propriedade.

Proposicao 2.29. Sejam (M, g) uma variedade Riemanniana e ¢ € M. Entdo existe um ¢ > 0
tal que expy : Be(0) C T,M — M ¢é um difeomorfismo de Be(0) sobre um aberto de M.

Demonstragio. A demonstragdo pode ser vista em [dC15, Proposicdo 2.9, p.73]. O

Com os dois principais objetos definidos, as geodésicas e a aplicacdo exponencial,
podemos estudar mais algumas propriedades relevantes destes objetos. A saber, a
propriedade localmente minimizante das geodésicas e o fato, provado no Lema de

Gauss posteriormente, que a aplicagdo exponencial é uma “isometria radial”.

Definicao 2.30. Sejam (M, g) uma variedade Riemanniana e uma aplicagdo continua c :
[a, b] = M do intervalo fechado [a,b] C R em M. Se existe uma particioa =ty < --- <ty =>b
de [a, b] tal que as restrigdes C|[tizti+1]’i =0,...,k—1, sdo diferencidveis, entdo dizemos que c
¢ uma curva diferenciavel por partes. Além disso, dizemos que c liga os pontos c(a) e c(D).

Chamamos c(t;) de vértice de c, e o dngulo formado por lim ¢’(t) com lim ¢'(t) é chamado de
t—t} t—t;
angulo do vértice c(t;).
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Precisaremos estender o conceito de transporte paralelo, dado pela Proposicdo 2.12,
as curvas diferenciaveis por partes. Para fazer isso, considere Vy € TyyM, t € [t;, tiq] €
estenda-o para um campo paralelo V(t),t € [t;, t;;1]; tomando V(t;) e V(¢;;1) como novos
valores iniciais, obteremos uma extensdo de V(t) paralelamente ao intervalo [t;_1, t;;2],

e assim sucessivamente.

Definicdo 2.31. Sejam (M, §) uma variedade Riemanniana e vy : [a,b] — M um segmento de
geodésica. Chamamos vy de minimizante se [(y) < I(c), onde I(-) indica o comprimento da curva

e ¢ é uma curva diferencidvel por partes qualquer ligando y(a) a y(b).

Os conceitos que serdo introduzidos a seguir tem como objetivo nos dar estrutura

para provar o Lema de Gauss.

Definicao 2.32. Sejam (M, g) uma variedade Riemanniana e A um conjunto conexo de R? com
U C A C cl(U), U aberto em R? e tal que a fronteira dA de A seja uma curva diferencidovel por
partes com dngulos dos vértices distintos de rt. Uma superficie parametrizada em M é uma
aplicacdo diferencidvel s : A C R? — M.

Observacdo 2.33. Nas condigdes da Definicdo 2.32, dizer que s é diferencidvel em A equivale a
dizer que existe um aberto V- O A onde s se estende diferenciavelmente. Além disso, a condigdo
sobre os Angulos dos vértices de A é necessdria para que a diferencial de s ndo dependa da

extensio considerada.

Vamos agora adaptar algumas defini¢des para o contexto de superficies parametri-
zadas. Assim, considere (M, ¢) uma variedade Riemannianaes: A C R? -+ M uma
superficie parametrizada em M. Um campo de vetores v ao longo de s é uma aplicacdo
que associa a cada q € A um vetor V(q) € Ty, M, que é diferenciavel, isto ¢, se f € uma
fungdo diferenciavel em M, entdo a aplicagdo q — V(q)f é diferencidvel.

Sejam (u,v) coordenadas cartesianas em R2. A aplicacdo u — s(u, vg), onde vy esta

fixado e u estd em uma componente conexa de AN {v = vy}, é uma curva em M, e

) ) 0s
ds <£), que serd denotado por 5

, € um campo de vetores ao longo desta curva.

Dessa maneira, temos g—z definido para todo (1,v) € A e 88_; é um campo de vetores ao
longo de s. Define-se £ analogamente.

Considere V um campo ao longo de s, %(u, vp) € a derivada covariante ao longo
da curva u — s(u,vg) da restricdo de V a esta curva. Isso define ——(u, v) para todo

du

DV
(u,v) € A. Define-se o analogamente.
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Lema 2.34 (de simetria). Sejam M uma variedade diferencidvel com uma conexdo simétrica e

s : A — M uma superficie parametrizada entdo

Dods D os
dvou duodv’
Demonstragio. A demonstragdo pode ser vista em [dC15, Lema 3.4, p.76-77]. O

Com as estruturas definidas podemos apresentar o Lema de Gauss, o qual nos d&

mais informagdes sobre a aplicacdo exponencial.

Lema 2.35 (de Gauss). Seja (M, g) uma variedade Riemanniana e considere p € M, v € T,M
tais que a aplicagio exponencial expy(v) esteja definida e w € T, (T, M) = T, M entdo

(dexpp)o(v), (dexpp)o(w)) = (v, w). )
Demonstragio. A demonstracdo pode ser vista em [dC15, Lema 3.5, p.77-79]. O

Assim, podemos definir uma gama de conjuntos dados pela imagem da aplicacdo

exponencial que serdo tteis posteriormente.

Definicao 2.36. Sejam (M, g) uma variedade Riemanniana e V uma vizinhanga da origem em
Ty M tal que a aplicagdo exponencial exp, seja um difeomorfismo em V. Chamamos exp,(V) = U

de uma vizinhang¢a normal de p.

Definicao 2.37. Sejam (M, g) uma variedade Riemanniana e V uma vizinhanga da origem em
Ty M tal que a aplicagio exponencial exp, seja um difeomorfismo em V. Considere ¢ > 0 tal
que cl(B¢(0)) C V. Chamamos expy(Be(0)) = Be(p) de uma bola normal (ou geodésica) de

centro p e raio e.

Definicao 2.38. Sejam (M, g) uma variedade Riemanniana e Be(p) de uma bola normal de
centro p e raio e. Chamamos a fronteira de uma bola normal de esfera normal (ou geodésica)

de centro p e raio € e denotamos-a por S¢(p).

Definicao 2.39. Sejam (M, g) uma variedade Riemanniana e Be¢(p) de uma bola normal de

centro p e raio . Chamamos as geodésicas em B.(p) que partem de p de geodésicas radiais.

Pelo Lema de Gauss 2.35, as esferas normais sdao uma hipersuperficie (subvariedade
de codimensdo 1) em M ortogonais as geodésicas radiais.

O outro fato geométrico que queremos apresentar é a propriedade minimizante das
geodésicas. Mostraremos, primeiramente, que localmente uma geodésica minimiza o

comprimento de arco.
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Proposicao 2.40. Sejam (M, g) uma variedade Riemanniana, p € M um ponto, U C M uma
vizinhanga normal de p e B C U uma bola normal de centro p. Considere 7y : [0,1] — B um
segmento de geodésica com y(0) = p. Se c : [0, 1] — M é qualquer curva diferencidvel por partes
ligando (0) a y(1) entdo I(y) < I(c) e se a igualdade vale entdo ([0, 1]) = ¢([0, 1]).

Demonstragio. A demonstragdo pode ser vista em [dC15, Proposicdo 3.6, p.79-80]. [

Observacao 2.41. Note que a Proposicdo 2.40 ndo garante um resultado global, isto é, se consi-
derarmos um segmento de geodésica suficientemente grande ele pode deixar de ser minimizante.
Por exemplo, seja M = S? com a métrica induzida de R® e considere as geodésicas que partem de
um ponto p, note que tais geodésicas deixam de ser minimizantes depois que passam pelo ponto

antipoda de p.

Teorema 2.42. Seja (M, g) uma variedade Riemanniana. Para cada p € M existem uma

vizinhanga W de p e um niimero 6 > 0, tais que, para cada g € W
expy : B5(0) C TyM — exp,y(Bs(0))

é um difeomorfismo e equ(B(;(O)) D W, isto é, W é vizinhanga normal de cada um de seus

pontos.
Demonstragio. A demonstragdo pode ser vista em [dC15, Teorema 3.7, p.80-81]. O

Definicdo 2.43. Sejam (M, g) uma variedade Riemanniana, p € M um ponto e W uma
vizinhanga de p. Dizemos que W é uma vizinhanca totalmente normal se W ¢ vizinhanga
normal de cada um de seus pontos, isto é, para cada q € W temos uma vizinhanga V da origem
em Ty M tal que

expg 1 V — expy(V)

é um difeomorfismo e exp, (V) O W.

Agora, de certo modo, apresentamos uma reciproca da proposicdo anterior que
mostrava que geodésicas minimizam o comprimento de arco. Ou seja, o préximo
coroldrio nos da que se uma curva é minimizante do comprimento de arco entao ela é

uma geodésica.

Coroldrio 2.44. Sejam (M, §) uma variedade Riemanniana e <y : [a, b] — M uma curva diferen-
cidvel por partes, com pardmetro proporcional ao comprimento de arco. Se <y tem comprimento
menor ou igual ao comprimento de qualquer outra curva diferencidvel por partes ligando y(a) a

¥(b) entdo v é uma geodésica. Em particular, v é uma geodésica.

Demonstragio. A demonstragdo pode ser vista em [dC15, Corolério 3.9, p.81-82]. O
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Nesta secdo apresentaremos uma defini¢do de curvatura (seccional) que, intuitivamente,
mede o quanto uma variedade Riemanniana deixa de ser euclideana. Mas, antes disso,
vamos comegar definindo o tensor de curvatura que serd relacionado com a curvatura

seccional posteriormente.

Definicao 2.45. Sejam (M, §) uma variedade Riemanniana. O tensor de curvatura de M é a
aplicagdo
R:X(M) x X(M) x X(M) — X(M)

definida por
R(X,Y)(Z) = VyVxZ —VxVyZ+VxyZ.

Observacao 2.46. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.
Denotaremos g(R(X, Y)W, Z) por (X, Y, W, Z).

Proposicao 2.47. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.
Considere f,g € D(M) e X,Y,Z,W € X(M). Valem as sequintes propriedades para R:

1. R(FX +gY,7) = fR(X, Z) + gR(Y, Z).
2. R(X, fY +g7) = fR(X,Y) + gR(X, Z).
3. R(X,Y)(Z+W) = R(X,Y)Z + R(X, Y)W.
4. RX,V)(fZ) = fR(X,Y)Z.
5. R(X,Y)Z = —R(Y, X)Z
6. R(X,Y)Z +R(Y, Z)X + R(Z, X)Y = 0 (Primeira identidade de Bianchi).
7. (XY, Z,W)+(Y,Z, X, W)+ (Z,X,Y, W) = 0.
8. (X,Y,Z,W)=—(Y, X, Z,W).
9. (X,Y,Z,W) = —(X,Y, W, Z).
10. (X,Y,Z,W) = (Z,W, X, Y).

Demonstragido. A demonstracdo pode ser vista em [dC15, Proposi¢do 2.2, p.100-101,

Proposigdo 2.4, p.101 e Proposi¢do 2.5, p. 102-103]. [
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Podemos obter a expressdo em coordenadas para o tensor de curvatura. Sejam (M, g)
uma variedade Riemanniana e R o tensor de curvatura de M. Considere p € M, um

ponto arbitrario, e (U, x) um sistema de coordenadas em torno do ponto p. Indicaremos

d
o X;. Logo,

R(Xj, X))Xi = Vx, V. Xk — Vx, Vi, Xe + Vix, x1 Xk
=V, (ThX1) = Vx, (T
= Th X + rﬁ.krf,xp — 9T X — T, T X,
= (3T} + ThTY, — T — T, ) X,
= Rj X, (10)

I _ 1471l q 1l ) )
onde Rijk = Tikqu — ijfiq +0;T — E)ifjk.

Além disso, obtemos também que
(Xi, X]', Xk, XS) =g (R(Xi, X]')Xk, XS)
=8 (jole' Xs)
1
= Rz’jkg Is
= Rijks- (11)
Uma curvatura que, intuitivamente, mede o quanto uma variedade Riemanniana deixa

de ser euclideana é dada pela curvatura seccional. A defini¢do da curvatura seccional

estd intimamente relacionada com o tensor de curvatura e é dada a seguir.

Definic¢do 2.48. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.
Considere p € M, um ponto arbitrdrio, ¢ C TyM um subespago bidimensional do espago
tangente Ty M e sejam x,y € o dois vetores linearmente independentes. Definamos a curvatura

seccional K(o) como o niimero real

(x,y,x,v) _
|x[2[y]? — (x,y)?

K(0) = K(x,y) =

Proposicdo 2.49. Nas condicdes da Definigdo 2.48 a curvatura seccional K(o) ndo depende da

escolha dos vetores x,y € 0.

Demonstragio. A demonstragdo pode ser vista em [dC15, Proposicado 3.1, p.105]. O
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Segue de um fato puramente algébrico, Lema 2.50, que o conhecimento da curvatura
seccional K(¢), para todo o, determina completamente a curvatura R de uma variedade

Riemanniana (M, g).

Lema 2.50. Seja V um espago vetorial tal que dim(V) > 2, munido de um produto interno
(,). Sejam R: VxV xV = VeR :VxVxV — V aplicagdes tri-lineares tais que as
condigoes (7), (8), (9) e (10) da Proposicio 2.47 sejam satisfeitas para

(x,y,2,t) = (R(x,y)z, 1), (x,y,z,t) = (R'(x,y)z, t).

Se x,y sio dois vetores linearmente independentes, escrevamos,

(x,y,x,Y) , (x,y,x,y)
K U) = ’ K (0-) = s
@)= ZRWE = (x, 92 =PI — (x,9)2

onde o é o subespago bidimensional gerado por x e y. Se para todo o C V, K(0) = K'(0), entio
R=R.

Demonstragido. A demonstragdo pode ser vista em [dC15, Lema 3.3, p.105-106]. O

A préxima proposi¢do nos d4 uma equivaléncia, com respeito ao tensor de curvatura,

para variedades Riemannianas com curvatura seccional constante.

Proposicao 2.51. Sejam (M, g) uma variedade Riemanniana n-dimensional e R o tensor de
curvatura de M. Considere p € M, um ponto arbitririo, e {eq, ..., e, } uma base ortonormal de
TyM. Escreva R;j; = (R(e;, ej)ex, e1), i,j,k, 1 =1,...,n. Entio K(o) = Ko para todo o C T, M,
se, e somente se,

Rjjir = Ko (0idji — Sirdjk) -

Demonstragdo. Primeiramente, considere X, Y, Z € T,M e escreva-os na base dada, isto

é X=Y/x0e,Y= Z}’:l yjej e Z = Y _; zxex. Perceba que

i=1

2
(o) (Eveee) (et
]:
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n n n n n n
=YY xixdi Y Y yividi — Y Y (xiyi) (xS
i=1 k=1 j=11=1 i=11=1
n n n n n n n n
=Y ) il )Y yividi — szzylfsl YO ) xyidi
i=1 k=1 i=11=1 i=11=1 =1k=1
n n n n n n n n
=Y Y NN xixyividadi — Y)Y Y xixkyiydudi
i=1 k=1j=11=1 i=11=1 j=1 k=1
n n n n
=).2 .2 ) Xy (6dj — 6udjk)
i=1k=1j=11=1
= xXixryiyi (6ixdjs — Sudjk) - (12)
ikl

Agora, vamos demonstrar a proposigdo propriamente dita.
(=) Suponha que K(0) = Ko para todo ¢ C T,M. Definamos R : T,M x T,M x
TpM — T,M por:

(R(X,Y)Z,e;) = Ko ) _ xiyizi (6ixbjs — 0l -
ijk
Note que R satisfaz as condicdes (7), (8), (9) e (10) da Proposicdo 2.47. Além disso,
considere {u,v} vetores linearmente independentes arbitrarios em ¢ e escreva-os na

base dada, isto é, u =Y\ | uje; e v = Z;lzl vjej, usando-se (12), obtemos

(R(u,v)u,v)
|ul?|v|* = (u,0)?
Ko Y uivjuo; (8udi — 8idj)
ikl
Y ujuojv; (6xbji — 61
Lkl
Y uiuvioy (8di — bindik)
ikl
Y uiuojo; (6xdji — 6iidjk)
Lkl
- K.

K(0) =

Portanto, K(¢') = K(¢) para todo o C T,M, pois {u, v} foram tomados arbitrarios, e pelo

Lema 2.50 temos que R = R. Disto segue-se que

Rijr = Riju
= (R(ei, ¢j)ex, er)
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= Ko (0ixdj1 — dudjk) ,

como desejado.
(<=) Considere o C T, M arbitrério e tome {X, Y} vetores linearmente independentes

arbitrarios em o. Note que, pela hipétese e por (12),

(R(X, Y)X, Y)
XY= (X 2

K(o) =

!3<|2!Y12 —-<?</Y7
sz F(R( i ej) i ef)
_ i=1j=1
XPIYE = (X, V)2
n n 2 9
Y ) x7yi R
=l
"~ XPIYE = (X Y7
szzyzKO i — l]5ji)
_ i=1j=1
XY = (X, Y)2
n n 2 o
sziy] (1
i=1j=1
VXY - (X, Y)?

Y oaEY i — Y (i)
P |

CTIXPIY[E - (X, Y)2
XY~ (X,Y)?
XY= (X,Y)2

=K,

= Ko,
como ¢ C T, M foi tomado arbitrario, segue o requerido. O

Algumas combinag¢des da curvatura seccional aparecem com tanta frequéncia que
daremos nomes a elas. Sdo elas a curvatura de Ricci e a curvatura escalar, definidas a

seguir.
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Definicao 2.52. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.
Considere p € M um ponto arbitrdrio, X € T, M um vetor unitdrio e {X1,Xa,..., X1} uma
base ortonormal de X+ C TyM. As médias:
1 n—1
Ric(X) = —— R(X, X)X, X;
ie(X) = =7 L (RO, X)X, X)
e, tomando-se X,, = X,

1 n n

Y Y (R(Xj, X)X, Xi),

1 .
S(p) = - ZRZC(X]') = ). )
j=1 j=1i=1

(n—1)
sdo chamados, respectivamente, de curvatura de Ricci na direcio de X e de curvatura escalar

em p.

2.4 COORDENADAS NORMAIS

Nessa secao vamos introduzir as cartas coordenadas normais e as cartas coordenadas
de Fermi. Tais cartas coordenadas facilitam o entendimento das geodésicas em uma
vizinhanca de um ponto ou de uma subvariedade.

Considere (M, g) uma variedade Riemanniana n-dimensional e p € M um ponto arbi-
trario. Queremos construir cartas coordenadas ao redor de p € M. Para isso tomemos
{e;}, uma base arbitraria de T, M e note que podemos definir um isomorfismo entre
bases B : R" — T, M dado por

n
B(x1,...,%5) = )_ xi;. (13)
i=1
Definicao 2.53. Sejam (M, g) uma variedade Riemanniana e p € M um ponto arbitrdrio.
Considere U = exp,(V) uma vizinhanga normal de p e defina a aplicagio ¢ = B~ o ( exp|v)71 :
UucM™m—R"
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onde B é o isomorfismo dado em (13). Chamamos o par (U, ¢) de carta coordenada normal
em torno de p.

Nas condi¢oes da Defini¢do 2.53 temos que para um ponto g € U arbitrario ¢(q) =

(x1(q), ..., xu(q)), onde x; : U C M — R sdo aplicagdes. Como U é uma vizinhanga

normal de p temos que exp, : V — U é um difeomorfismo, em particular, uma bijegao.

Assim, tome v € V' C T, M tal que expy(v) = g e escreva v = Y. vie;. Logo,

P(q) = ¢p(expy(v))
=B lo (exppl,) 1o expp(v)
=B (v)

n
= B! <Z Z)l’ti)
i=1

=(01,...,0pn).

X; (expp (i%‘h’)) = ;. (14)
i=1

Com isso, na préxima proposicdo apresentaremos algumas das propriedades pelas quais

Disto, segue-se que,

mostramos a conveniéncia de escolhermos trabalhar com cartas coordenadas normais.

Proposicdo 2.54. Sejam (M, ) uma variedade Riemanniana, p € M um ponto arbitrdrio e

(U, {x;}) uma carta coordenada normal arbitrdria centrada em p € M. Valem que:
1. As coordenadas de p sio (0,...,0).

2. As componentes da métrica em p sio g;; = 0jj.

3. Para todo v = Y} | v; % € TpyM, a geodésica y(t), com y(0) = p e 7Y(0) = v, é
i

p
representada em cartas normais pala reta

y(t) = (tvq, ..., toy). (15)

sempre que t estiver em um intervalo I C R que contem a origem 0 € R, tal que
y(I) C U.

4. Os simbolos de Christoffel nessas cartas zeram em p.

23
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5. Todas as derivadas parciais de g;; nessas cartas se anulam em p.

Demonstragido. A demonstragdo pode ser vista em [Lee18, Proposicado 5.24, p.132-133].
]

As cartas coordenadas de Fermi sdo uma generalizacdo natural das cartas coordenadas
normais quando substituimos um ponto na variedade por uma subvariedade. Assim, a
primeira coisa na qual esbarramos para fazer tal generalizacado é a aplicagdo exponencial
da variedade. Para contornar esse problema usamos a aplicagdo exponencial normal,

definida a seguir.

Definic¢do 2.55. Sejam (M, g) uma variedade Riemanniana n-dimensional, I C M uma
subvariedade mergqulhada e 7t : NI — T o fibrado normal de ' em M. Considere U C TM o
dominio da aplicagio exponencial dado na Defini¢do 2.27. Chamemos Ur = U N NI C TM.
Chamamos a aplicagdo E : Ur — M dada pela restrigdo exp|, : Ul — M de aplicagdo

exponencial normal de I' em M.

Podemos provar que aplicacdo exponencial normal é diferencidvel e que restrita a

uma vizinhang¢a adequada é um difeomorfismo.

Observacao 2.56. Note que a aplicagio exponencial normal dada pela Definigdo 2.55 é diferen-
cidvel, pois é uma restri¢do da aplicacdo exponencial exp, que é diferencidvel, ao aberto Ur do
fibrado.

Proposicao 2.57. Sejam (M, g§) uma variedade Riemanniana n-dimensional, I C M uma
subvariedade mergqulhada. Entdo existe uma vizinhanga da se¢do nula do fibrado normal tal que

a aplicagdo exponencial normal E é um difeomorfismo sobre sua imagem.
Demonstragio. A demonstragdo pode ser vista em [Lee18, Teorema 5.25, p. 133-135]. [

Definicdo 2.58. Sejam (M, §) uma variedade Riemanniana, I C M uma subvariedade mergu-
lhada de M e V uma vizinhanga da se¢do nula em NT tal que a aplicacio exponencial E seja um

difeomorfismo em V. Chamamos E(V) de vizinhanca normal de ' em M.

Assim, com o problema da aplicagdo exponencial contornado através da aplicagdo

exponencial normal, podemos definir as cartas coordenadas de Fermi.

Definicao 2.59. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p € I arbitrdrio. Sejam U = E(V) uma vizinhanga
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normal de I em M, ¢ = (y1, ..., Yx) um sistema de coordenadas arbitrdrio em p e Ex,4,...,Ey
secoes ortonormais de NI'. Para (q,v) € V, com v = Y ;'\, v; E g definimos a aplicagiio

(P = (xll sy xn), onde

X (E (qf Yik1 Vi Ei\q>> =y, j=1...k
%(EﬂbiaﬂwEmJ>=m, j=k+1,...,n

Chamamos o par (U, ¢) de carta coordenada de Fermi em torno de p.

(16)

Note que (16) define, de fato, cartas coordenadas em p, pois a aplicagdo exponencial
normal é um difeomorfismo em vizinhangas normais.
A seguir faremos dois lemas técnicos, nos quais estudaremos algumas propriedades

das cartas coordenadas de Fermi.

Lema 2.60. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € T um ponto arbitrdrio. Considere (U, {x;}1,) uma

carta coordenada de Fermi em torno de p entdo

d
0Xki1

d

r,...,axn

T

sdo ortonormais.

Demonstragio. Seja q € U um ponto arbitrario diferente de p. Temos que parak+1 < i <

n a curva integral de — iniciando-se em g é a geodésica -y definida por y(t) = E(q, t E;| q).

axi
Entao
° | =vo= k|
axl ] - ’Y - M q:
Como E,-|q sdo ortonormais para k+1 < i < n, segue-se o desejado. O

Lema 2.61. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g). Considere a geodésica o« normal a I’ com a(0) = p € T
e «’(0) = v. Entdo existem cartas coordenadas de Fermi (U,{x;}!,) tal que para t > 0

suficientemente pequeno temos

0
0Xk41

=a'(t) (17)
a(t)

6 Tpr,
4

€ T,I't (18)
4

9 9
axi ax]

25
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paral <i<kek+1<j<n. Além disso,
(x; 0 a)(t) = tdjk11 (19)
paral <i<n.

Demonstragio. Consideremos um referencial ortonormal {ey,...,e,} em oM da se-
guinte maneira: {ey,...,e;} formam uma base para TpI' e {ex.1,...,€,} sd0 as segdes

ortonormais Ej,q, ..., E; de NI em uma vizinhanga de p, com Ej,; = &/(0). Tomemos

(y1,-..,Yx) um sistema de coordenadas em I' tal que @ =e,i=1,...,k
i

Seja (x1, ..., xy) cartas coordenadas de Fermi de I' em torno de p como na Defini¢do
2.50.
Note que as condi¢des em (18) sdo satisfeitas por construcdo. Além disso, como as

cartas coordenadas de Fermi sdo dadas pela aplicacdo exponencial normal, temos que a

curva integral de e iniciando-se em p é uma geodésica. Por outro lado, o = Ep1
e, por construgdo, &'(0) = Ex,1, donde, pela unicidade das geodésicas, segue (17).
Por outro lado, em relagdo as cartas {x;}, temos que
/ - 1y 9
w'(0) = ;,(xi o w)'(f) 31|y (20)
Aplicamos (17) em (20) e obtemos
0 L 0
0Xf41 a(t) B ;ui °ay(®) a_xl a(t) .
Equivalentemente,
(xjowa)(t)=0, iZk+1
(xjoa)(t)=1, i=k+1.
Donde,
(xj 0 a)(t) = tjk+1.
Portanto, temos (19) e o resultado segue. 0

2.5 CAMPOS DE FERMI

Com as cartas coordenadas de Fermi definidas, podemos construir outras estruturas
para provarmos o Lema de Gauss generalizado posteriormente. Comecemos com os

campos de Fermi.
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Definicao 2.62. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € T um ponto arbitrdrio. Considere U C Ur, onde
Ur é o dominio da aplicacdo exponencial normal na Definigcdo 2.55. Tome (x1,...,xy) cartas
coordenadas de Fermi centradas em p. Dizemos que A € X(U) é um campo de Fermi
tangencial se
L9

A= ;cia—xi,

onde ci,i=1,...,k, sdo constantes. Analogamente, dizemos que X € X(U) é um campo de

Fermi normal se

onde dj,j =k+1,...,n, sido constantes.

Para p € I' denotaremos por X(I', p)T e X(T,p)*" os espagos dos campos de Fermi

tangenciais e normais, respectivamente. Note que X(T,p)T e X(T, p)* sdo espacos

vetoriais de dimensdo k e n — k, respectivamente. Além disso, considere
X(T,p) = X(T, p)" & X(T, p)*

o espaco dos campos de Fermi em p. Quando I' é um ponto, os campos de Fermi
normais coincidem com os campos coordenados das cartas normais. Note que se
E¢s1, ..., Ey sdo rotacionados por uma matriz ortogonal constante entdo o espaco do
campos de Fermi permanece o mesmo.

Uma das conveniéncias de usarmos coordenadas de Fermi é a simplificagdo que ocorre

com algumas estruturas, como por exemplo a funcdo distancia a uma subvariedade.

Definic¢do 2.63. Sejam I' C M uma subvariedade merqulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € I um ponto arbitrdrio. Considere (x1, ..., x,) cartas

coordenadas de Fermi centradas em p. Para o > 0 tome
n
2 2 Xj 0
o= ) x e N=) Z—. (21)
i<k 1 S 0 0x;

Vamos mostrar que ¢ e N estdo bem definidos, isto é, sio independentes da escolha

das cartas.

Lema 2.64. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € I um ponto arbitrdrio. Entdo as defini¢cdes de o e N

dadas na Definigdo 2.63 sdo independentes da escolha das cartas coordenadas de Fermi em p.

27
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Demonstragido. Considere (x1,...,x,) e (y1,...,Yn) cartas coordenadas de Fermi centra-
dasem p e {Ex1,...,En} € {Fx41, ..., Fu} as segdes ortogonais de NI' que déo origem a

tais cartas. Podemos escrever ,

Fi = Z El]'l'E]',
j=k+1

onde (4j;);,; € uma matriz de fungdes no grupo ortogonal O(n — k) com cada a;; € D(T).

g o )
(£ (5

n
Z r1ai

I=k+1

-y zzyz< (Z E)) (22)
I=k+1 j=k+1

De (22) segue-se que x; = Y ', a;y;. Entdo

<Z ﬂiz}/z> ( Y. ﬂijl/j)
1 \I/=k+1 j=k+1

n

n
Y. ). anaiyiy;

11=k+1 j=k+1

n

Z Zﬂizﬂzj yiy;j
=k+1 \i=k+1

n
Y. Siyiy;
j=k+1

Entao

]
=
<o
Il

T
>
+
—_

~.

~

1j

~
—_

I
~T

Il
L n L n Iy
+-f’1: 4—[vj: 4-f’1: +-f’]: 4—[v1:

—_

<

~.

Além disso, o _ =0paraj=1,...,k
By]

=
o
aQ
S

dx; d ! 0
Z ay] axl Z al]a_xi‘ (23)

ay] i=k+1 i=k+1
Por outro lado, tomando-se (b;;) = (ai]-)_ , temos

n

Xj= ) i

1=k+1
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n

Z bijxj = Z bij Z ajiyi

j=k+1 j=k+1  I=k+1
n n
= ) ) by
j=k+1 1=k+1
n n 1
=Y Y @) ey
j=k+11=k+1
n
=Y Sy
I=k+1
= Yi. (24)
De (23) e (24) obtemos que
Eug- X (L) (D
Yin— = bl]x] ali~_—
i Wi 55\ 1=k+1 axl
n n n a
=2 ) ) bixmi -
i=k+1 j=k+1 I=k+1 9x;
n
= Z Z Z x](az]) alza
i=k+1 j=k+1 I=k+1
n n n 1 a
=) 2| L may) | o
jek+ll=kel  \i=k+1 !
1 0
=) Z X015~
et irwe BCEY
.
= i—
ik O%i
Disto segue o requerido. O

O préximo lema nos dé a expressdo em cartas coordenadas de Fermi para a fungdo
distdncia a uma subvariedade e caracteriza o normal para fora de uma subvariedade

em cartas coordenadas de Fermi.

Lema 2.65. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € M um ponto arbitrdrio tal que existe uma geodésica

minimizante v de I' a p, chegando em T ortogonalmente. Entdo

o(p) = dr(p) e Nl =7'6)-
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Demonstragio. Primeiramente, tomemos y(0) = g € I'. Tome b € R tal que y(b) = p. Pelo
Lema 2.61, existem cartas coordenadas de Fermi (xy,...,x,) centradas em p tal que

xi(7y(t)) = tdjr+1. Consequentemente,

Ap)= ), x(p= ) ()= Z b*0iks1 = b° = di(p), (25)

i=k+1 i=k+1 i=k+1

por (25) implicamos que o(p) = dr(p). Por outro lado,

Z x d
Nlo= ), =
7 i=k+1 U axl 7(s)
_ i xi(7(s)) 9
i 0(1(s) Ox; 7(s)
_ i 551k+1 d
i=k+1 dl‘(’)’(s)) axl f}/(s)
3
= Oik1 5
i=k+1 1 a Lly(s)
9
an+1 Y(s)
=7'(s)-
Donde temos o requerido. O

O préximo lema nos apresenta algumas propriedades do campo N e sua relacdo com
campos de Fermi tangenciais e normais. Além disso, relaciona todos esses campos com

a fungédo distancia o.

Lema 2.66. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € T um ponto arbitrdrio. Considere X,Y € X(T, p)* e
A,B € X(T,p)". Entdo

VNN =0, (26)
N =1, (27)
N(o) =1, (28)

A0) =0, (29)
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[X/Y] = [A/B] = [X/A] = [N,A] =0,

1 1

[N,X] = _;'X+ E’X(U)N,

[N,cX] = X(0)N,

VNVNZ +R(N,Z)N =0,

onde Z = A+0X.

(30)

(31)

(32)

(33)

Demonstracdo. Primeiramente, como N |7(s) = 7/(s), pelo Lema 2.65, temos que VyN =

V157 (s) =0e [N| = [7/(s)| = 1. Donde seguem os itens (26) e (27).

Para o item (28) notemos primeiramente que

n n
Xi 0, X; 0
Y, Z—(0®) =20 ) Z=——(0) =20N(0).
ik 7 0% i 7 0%
1 2
N(o) = ZTN(U )
1 n .xl' a 2
= o Y H ()
20 2~ 0 0x;
1 & x5 0 ( Z 2)
=— Y 2= Y x
20 i=k+1 o 0X; j=k+1 !
1 & & 9 ( 2)
LI (4
20 i=k11 7 j=k+1 0x; !
2
20 L5 i 7 0%
1 n n X ax]
e T ¥ o
714
20 e 70X
1 n n X;
= Z Z i,
77y
20 i=k+1 j=k+1 o
1 n
= 2 X xixdy

=
M)

Il

—_

]
A =
1= =[]
—_
~
]
=
+
i

Sl ~
]
o
+
~

(34)
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onde «; € R. Assim,

0
Para o item (29) denotemos A € X(T', p) por A = Zﬁ-‘zl Dci%,
1

ko9 ko9
2\ _ L9 oy L9
A(o?) = i§=1 o o, (0°) =20 i§=1 o o, (o) =20A(0). (35)

Por (35) temos que

Ao) = iA(az) = ia

0
Para o item (30) denotemos X,Y € X([, p)L por X =374 ocia eY =YY" ‘318x ,
1

o eB= leba

aj=— ox, Fm Logo,

também denotaremos A, B € X(T', p)! por A = Zﬁ-‘zl

n n
k& 9 9
[Eaza a0 1B ot FCR T B
n k 9 1 nok 9 9
[X, A] = lzéllxza—xlljzzla]a_x]_ _izgljzzllxia] [axl’ ax]] =0, (38)

[N, AI(f) = N(A(f)) — AN(Y))
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da; of *f k u X af x; 0°f
-] . _ . R it B W A |
X; 0X; T4 0x;0X; Zﬂ] 1_,{2 ox; ( (7) ax, o 9xj0X;

=1

n

k 2 kK n 2 k
T of
o Z”Jaxiaxj ;a]l; 0 0x0x; — L9 ZZ ox; < > ax;

j=1

k 2 n 2 k
i 9F i Pf of
Z](Taxax] ZZ ]Uaxax] ZZ ]ax]< >8xZ

0
]ax] ( )E)Jj:,

i=k+1 i=k+1

% oo

|
™~

-
1]
—_
~

—_
X
<0

|
™~

—
I

—_
-~

—_

I’ I I
= = =
+[ ]: +[ ]: +[ ]:

—_

|
™~

1l
i

M-

v
R

J— x._
zax]‘ ﬂ
o2 axi

10x; of L x;00 dof
%;aﬁﬁ'EZXZJ;gﬁg

k+1

PR— .._+ — e —
To Y ox; L L ajaZaax 9x;

j=1i=k+1

n n
xlo 2) 9
; a](TZO'ax]' <:Z+: xl) axi

j=1i=k+1 I=k+1
k n n .
LY Y (4) 5
Fliskrii=ke1 9 20 0% Xi
LA x 1, oxof
_ZZ ZuJO’ZO’ 9%, ox;
j=1i=k+1I=k+1 ]
k n n
XiX] d
=2 2 2 4505 (f)
j=1i=k+1 I=k+1 "o? " ox;
= 0(f) (39)

Por (39) temos que [N, A]

= 0 e disto segue-se, juntamente com (36), (37) e (38), que

[X,Y]=[A,B]=[X,A] = [N, A] = 0

33
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Para o item (31) denotemos X € X(T, p)* por X = Y ai% e notemos que
1
X(0?) = Z aj—(0%) =20 Z o i(a) 20X(0). (40)
5 18 "9x;
+1 i=k+1

De (40) obtemos que

X(o) = —X(Uz)
1 n a n ’
= — — X
20 —%1 0x; (z:;h l)
o
2‘71%11§1 '9x; ( )
1 n n a l
w;2x
2‘71%11%'1 'ox;
Z 0 x10; (41)
z k+1 I1=k+1

Assim, usando (41), temos que

[N, X](f) = N(X(f)) — X(N(f)

Il
I
1= 2]
=
S &
Q)
=~ j<|Q')
T :
~.
| - 2
*
‘N
QJ
\R
N—

iﬁi aﬂé]af i( )E)f Xi 82f
= ox; E)x] ]axlax] ]k+1 l.=+ ox; ox; aax]-axi

i=k+1 7 j=k+1
n X; n aZf n n X; aZf n n 8f
= — o o n;
1;1 v j%l ! 9x;0x; ]%1 ]isz+:1 0 9x;0x; j:%l ]i:; 9x; ( ) 0x;
n n X; aZf n n xz aZf n n d X; af
= o nj— ni— (— ) =—
1.2;1 ].:%1 I'o E)xlax] ]_%1 '—%1 o Bxlax ].:%1 i:%l Tox; (0) ox;

o n n af
j:%l z'=§1 'ox; ( ) ox;
Xx; 80
- ax]a af
Z Y 02 ox;

j=k+1i=k+1
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LR | 5af & x; 0o df

B Z‘ Z‘ o ijgjL Z Z “azax]ax

jok+1 i=k+1 b jekliskel
n n n j 2
= —i:%:l %“fa%‘f“jgl igl“'%%raa%aai
:_lélaza <f>+éh%“§l% 52 lgilaai
=_llél laxl(f) ]%11%1“]95151] 21%%
=_Exgv+;XWﬂWﬁ
_ (_lxﬂx«r )(f) )

1 1
Por (42) temos que [N, X] = _EX + EX(U)N'

Para o item (32) usaremos os itens (28) e (31) como segue
[N, o X](f) = N(0)X(f) + ¢[N, X]
~1X() +o (~ X0 + L XON())

= X(f) — X(f) + X(0)N(f)
= X(0)N(f). (43)

Por (43) temos que [N, cX] = X(0)N.

Para o item (33) note primeiramente que, pelo item (32), temos

[N,0X]=Vn(@X)— VsxN
VNIN, 0X] = VNVN(@©X) — VNVexN
VNVn(@X)=VNIN,ocX]+ VNVexN
= VN(X(0)N) + VN VxN. (44)
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Por outro lado, temos também que, pelo item (26),

R(N,0X)N = VyxVNN — VNVoxN + Vin ox)N
VNVexN = —=R(N,cX)N + V[N,UX]N-

Juntando (44) e (45) e usando os itens (26) e (32) obtemos que

VNVn(EX) = VN(X(0)N) = R(N, 0 X)N + VN ,ox1N
= VN(X(0)N) — R(N, e X)N + VxnN
= N(X(0))N + X(0)VNN — R(N,cX)N — X(0) + VNN
= N(X(¢))N — R(N,cX)N.
Por outro lado, usando o item (28), obtemos que
[N, X](0)N = (N(X(0)) — X(N(0))) N
= (N(X(0)) = X(1)) N
= N(X(0))N.

Juntando (46) e (47) e usando os itens (28) e (31) obtemos que

VNVN(@EX) = [N, X](@)N — R(N, cX)N
1 1
= <_EX + EX(O’)N) (0)N — R(N,cX)N
= —}TX(O)N + %X(U’)N(G’)N — R(N,cX)N
_ —}TX((T)N + %X(U)N — R(N, e X)N

= —R(N,cX)N.
Além disso, temos pelo item (30) que

0=[N,A]=VNA -V N
VNVNA =VNV4N.

Por outro lado, usando os itens (26) e (30), temos que

R(N,A)N = V4VNN — VNV4N + V[N,A]N
= —VnNVaN.

(45)

(46)

(47)

(48)

(49)

(50)
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Juntando (19) e (50) obtemos que
VNVNA =—R(N, A)N. (51)
Por fim, usando (48) e (51), temos

VNVNZ = VNVN(A - 0X)
= VNVNA +VyVN(X)
= —R(N, A)N — R(N,cX)N
= —R(N,A+cX)N
= —R(N,Z)N
VNVNZ +R(N,Z)N =0.

Donde temos o requerido. O

2.6 LEMA DE GAUSS GENERALIZADO

Nesta secdo apresentamos o lema de Gauss generalizado que mostra que o normal
para fora de uma subvariedade é dado pelo gradiente da funcdo distancia. Mostramos

também que o lema de Gauss generalizado implica o lema de Gauss.

Lema 2.67 (de Gauss generalizado). Sejam I' C M uma subvariedade mergulhada k-
dimensional de uma variedade Riemanniana n-dimensional (M,g) e p € I. Entdo temos

que N = grad(o).

Demonstragido. Sejam X € X(T,p)*, A € X(,p)! e tome Z = A +cX. Denotaremos
3 L9
X=Y" %3 © A=Y%, ZE Note que

N%(Z,N) = N(N(Z,N))
= N(VNZ,N) +N(Z,VyN)
= (VNVNZ,N) + (VNZ,VNN)
(—=R(N, Z)N, N)
0. (52)
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Além disso,

N%(Z,grad(c)) = N*Z(0)

= N2(A + 0 X)(0)

= N(NA + N(cX))(0)
=N(NA—-AN+ AN+ N(cX) — (c¢X)N + (c X)N)(0)
= N([N, A]+ AN + [N, cX] + (cX)N)(0)
= N(AN + X(0)N + (¢ X)N)(0)
= N(A(N(0)) + X(0)N(0) + (¢ X)(N(0)))
= N(A(1)) + N(X(0)) + N((e X)(1))

= N(X(0))
X9 |
= N “le
(7]8x~
j=k+1 T \i=k+1
L& X9 (1
= L L oo (oM
j=k+1i=k+1 ]
S v Yo (1 1 ox;
= Z Z e a;x; + rx,a
j=k+1i=k+1 ¢\ 9% o
n n X n 1 1
— ] Z
= Z Z — ——X]01i&;X; + — ;0
3 jriti V7]
j=k+lizkr1 7 <l=k+1 o o
n n n n n
_ Xi K
== ) ) ayEEOt ), ), 5%l
j=k+1i=k+1I=k+1 j=k+1 i=k+1
1 1
=— Z AXjXit Z 5 X
j=k+1i=k+1 i=k+1
n x]Z LS n
— _ i Qi i
== ) 2 B 2Nt > 3
j=k+1 i=k+1 i=k+1
n n
o &j
== ) X+ ), 5%i=0. (53)
i=k+1 i=k+1

De (52) e (53) temos que ao longo de uma geodésica qualquer y p.p.c.a. normal a I as

fungoes t — (Z, N)(y(t)) e t — (Z, grad(c))(7y(t)) sdo ambas lineares em ¢.
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Para provar que sdo a mesma fungdo basta provar que o limite delas e de suas
derivadas coincidem no 0. De fato, pelo Lema 2.61 podemos tomar cartas coordenadas

de Fermi tais que (x; o y)(t) = tdj41, para 1 < i < n. Logo
m(Z, N)(y(t)) = im(A + 0 X, N)((t))
t—0 t—=0

= Hm(A(y(£), N(y(9)) + Em o (y () (X(y(£), N(v ()

x(1()
= lim(0, N(7()) +lim o(1( f))<l§10¢l (v(1), ;ﬂ 0@ a7 <>>>

n toips
:limt< Y. v l(7 1), Z ]kl a ( ())>
I=k+1

t—0 j=k+1
= lim t«
t—0 el

= limt< Z lea
—0. (54)

t—0 I=k+1

Além disso,

lim(Z, grad(@)) (v(8)) = lim Z(@)(x(£)
= lim A@)((8) + lim e X (@)(7(2)

= lim o X(o)(v(1))

= lim ) ax((0)
z k+1

= lim 2 aitdiin
t—0 .
i=k+1

= 15% 71998
=0. (55)

Agora, para as derivadas, temos que

lim N(Z, N)(v(8)) = lim ((VnZ, N) + (Z, VaN)) (1(8)
= lim(V A + Vn(eX), N)(1(8)

=lim ((VNA,N) + (N()X +0VnNX,N)) (7(1))

t—0
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Além disso,

t—0

= lim (%A|N|Z +(X,N)+0oN(X, N)) ((1))
= lim 2 ACY(®) + im (X, N)(5(6) + lim oN((X, N)(7(6))
= }1_{% [ }1_{% oN(ags1)

= Ngt1- (56)

lim N(Z, grad(e))(v(1)) = Lim N(Z(e))(v())

=lim N(A + 0 X)(@)(v()

= lim(NA — AN + AN + N(@)X + ONX)(©@)((1)
= lim(IN, A] + AN + X + eNX)(@)(7(1)

= lim(A(N(0)) + X(7) + eN(X(@)) (v ()

= lim X(0)(y(£)) + im o (y ()N (X (@) (7(£))

. 1 < . 1 .
- lim oy Lo, a0 + e (N (mm) p3 ocz-xiw(t»)

=k+1
= lim 1 E w;td +1limtN 1 En w;td
0t itCik+1 0 tiklzzk+1

= lim Ny + lim tN (Dék+1)
t—0 t—0

= Ofy1- (57)

Por (54), (55), (56) e (57) temos que as fungdes t — (Z, N)(y(t)) e t — (Z, grad(c))(y(t))

sdo iguais. Como <y é arbitrério, temos que

requerido.

(Z,N) = (Z,grad(0)).

Além disso, para g € M numa vizinhanga de I' todo vetor em T,M ¢ da forma Z =

A+0X, A € XT,p)T e X € X(,p)*. Entdo concluimos que N = grad(c), como

O

Corolario 2.68. O Lema de Gauss generalizado implica o Lema de Gauss.

Demonstragio. Sejam (M, g) uma variedade Riemanniana, p € M um ponto arbitrario e

{e1,...,e,} uma base ortonormal de TyM = To(T,M). Note que as cartas coordenadas
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normais em T, M, associadas a base {ey, ..., e,}, sdo a base dual a {ey, ..., e, }. Assim,
podemos considerar N o vetor normal definido da Defini¢do 2.63 e s uma fungéo
distancia, também da Definigdo 2.63, para T, M. Considere também N o vetor normal
da Defini¢do 2.63 e ¢ é a funcdo distancia, também da Definigdo 2.63, para M.

Note que por (28) do Lema 2.66 temos que N(¢) = 1 e N(s) = 1. Pelo Lema 2.67 temos
que

IN| = (N,N) = (N, grad(c)) = N(0) = 1 (58)

IN| = (N,N) = (N, grad(s)) = N(s) = 1. (59)

Mas, pelo Lema 2.65 sabemos que N é o vetor tangente as geodésicas radiais em T,M e
N é o vetor tangente as geodésicas radiais em M. Portanto, por (58) e (59) temos que
expp preserva o comprimento de vetores tangentes as geodésicas radiais.

Da interpretacdo usual do operador gradiente temos que grad(c) é perpendicular
a cada uma das hipersuperficies ¢ = constante. O mesmo vale para grad(s) em T, M.
Em outras palavras, os vetores tangentes as geodésicas radiais sdo perpendiculares as
hipersuperficies o = constante em M e s = constante em T, M. Portanto, temos que exp,
também preserva a ortogonalidade entre vetores tangentes as geodésicas radiais e os

vetores tangentes as esferas geodésicas em T,M e M. O

2.7 CAMPOS DE JACOBI E O CONJUGATED-LOCUS

Nesta secdo iremos definir os campos de Jacobi, apresentar algumas propriedades e
relaciond-los com os campos de Fermi. Além disso, construiremos o conjugated-locus,

que terd grande importancia posteriormente.

Definicdo 2.69. Sejam (M, ) uma variedade Riemanniana e vy : [0,a] — M uma geodésica
de M. Um campo de vetores | ao longo de v é um campo de Jacobi se satisfaz a equagio de

Jacobi:
—= + RO (), J()' () =0, (60)

pata todo t € [0, a].

41



42

PRELIMINARES

Observacao 2.70. Sejam (M, g) uma variedade Riemanniana n-dimensional, <y : [0,a] — M
uma geodésica de M e | um campo de Jacobi. Afirmamos que o campo de Jacobi | é determinado
pelas condigoes iniciais J(0) e —(0).

De fato, seja {E1(t), ..., Ex(t)} campos paralelos e ortonormais ao longo de y. Considere

J(t) =) fihEi(t) e aij = (R(Y'(t), Ei()7' (1), Ej(1)),
i=1

comi,j=1,...,n. Entdo
[)2] n
a = LSOO,

RO, DY =) (RO, DY ENE;j =) ) filR(Y, E)Y, EjE; = ) ) _ fiaiE;.
]=1

j=li=1 j=li=1

Portanto, (60) é equivalente ao sistema
n
i
'+ ai(®)fi(t) =0,
i=1

j=1,...,n. Queé um sistema linear de sequnda ordem. Assim, da teoria das EDO’s, dadas as

D
condigdes iniciais [(0) e d—t](O), existe uma solugio de classe C* do sistema, definida em [0, a].

Quando demostramos o lema de Gauss definimos as superficies parametrizadas
e, sem dar nomes, construimos um campo de Jacobi ao longo de uma geodésica. A
préxima proposi¢do mostra que essa é, essencialmente, a tinica maneira de construirmos

campos de Jacobi ao longo de uma geodésica.

Proposicdo 2.71. Sejam (M, g) uma variedade Riemanniana, 7y : [0,a] — M uma geodésica

D]

normalizada em M e | um campo de Jacobi ao longo de v com J(0) = 0. Faga E(O) =we

7'(0) = v. Considere w € Tap(T.(0)M) e construa uma curva v(s) em T.,)M com v(0) = av e
v'(0) = w. Faca f(t,s) = expptv(s), p = ¥(0), e defina um campo de Jacobi J por J(t) = %(t, 0).
Entdo | = ] em [0, a].

Demonstragido. A demonstracdo pode ser vista em [dC15, Proposicdo 2.4, p. 126]. O

Corolario 2.72. Sejam (M, §) uma variedade Riemanniana e y : [0,a] — M uma geodésica.

Entdo um campo de Jacobi | ao longo de «y com J(0) = 0 é dado por

J(t) = (dexpp)iyo)(t]'(0)), t €0, a].
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Demonstragio. Segue diretamente da Proposicdo 2.71. O

Com as principais propriedades dos campos de Jacobi estudadas podemos relaciona-

los com os campos de Fermi estudados anteriormente.

Proposicao 2.73. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € I um ponto arbitrdrio. Considere -y uma geodésica

normal a T em p e suponha que tenhamos X € X(T, p)*t e A € X(T, p)T. Entdo as restrigdes a vy

oX|, e Al,

sdo campos de Jacobi.
Demonstragio. Segue diretamente de (48), notando-se que N |,Y(S) = 7/(s), pelo Lema 2.65,
que
(0X|.)" =V yVy(oX]|,)

= VN|,YVN|,Y(0-}<|7)

= (vaN(UX)) |'y

= (—=R(N,cX)N)

= —R(v,eX)7"

Ly

Donde segue-se que 0 X|, € um campo de Jacobi, como requerido. A prova de que A|,

é um campo de Jacobi é andloga usando-se (51). O

Proposicdo 2.74. Sejam I' C M uma subvariedade mergulhada k-dimensional de uma variedade
Riemanniana n-dimensional (M, g) e p € T um ponto arbitrdrio. Considere (x1,...,x,) uma
carta coordenada de Fermi centrada em p. Entdo, ao longo de qualquer geodésica normal, o

campo de vetores
d

0'_
Bxl-
sdo campos de Jacobi parak+1 <i < n.

0 ,
Demonstragio. Basta considerarmos na Proposigdo 2.73 os campos X = PPt k+1<i<n
i

e o resultado segue. O
Assim, vamos definir o conjugated-locus e depois mostrarmos, através da proxima
proposi¢do, que um ponto é conjugado a outro ao longo de uma geodésica se, e somente

se, for um ponto critico da aplicacdo exponencial.
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Definicao 2.75. Seja (M, g) uma variedade Riemanniana e <y : [0,a] — M uma geodésica de
M. O ponto ¥(ty) é conjugado de y(0) ao longo de vy, ty € [0, a[, se existe um campo de Jacobi
| ao longo de vy, ndo identicamente nulo, com J(0) = 0 = J(tp). O niimero mdximo de tais campos

linearmente independentes é a multiplicidade do ponto conjugado y(to).
Note que se (fp) é conjugado de y(0), entdo y(0) é conjugado de y(tp).

Definicao 2.76. Sejam (M, g) uma variedade Riemanniana e p € M um ponto de M. O
conjunto dos (primeiros) pontos conjugados de p, para todas as geodésicas que saem de p, é

chamado de conjugated-locus de p e é indicado por C(p).

Proposicao 2.77. Seja (M, g) uma variedade Riemanniana e y : [0,a] — M uma geodésica
de M tal que y(0) = p. O ponto q = ¥(to), to € [0,al, é conjugado de p ao longo de vy se, e
somente se, vy = toy'(0) é um ponto critico de expp. Além disso, a multiplicidade de q como

ponto conjugado de p é igual a dimensdo do niicleo da aplicagio linear (dexpy)y,.

Demonstragido. A demonstragdo pode ser vista em [dC15, Proposicado 3.5, p. 130]. []

2.8 A SEGUNDA FORMA FUNDAMENTAL

Considere (M, g) uma variedade Riemanniana k-dimensional, onde k = m+mn, e f :
N — M uma imersdo, onde N é uma subvariedade n-dimensional. Para cada p € N, o

produto interno em T, M decompde T, M na soma direta
T,M = T,N & (T,N)*,

onde (T,N)! é o complemento ortogonal de T,N em T,M. Assim, para v € T,M,
podemos escrever

v=0v +ot,

onde vT € T,N e v* € (T,N)*.
Note que ja usamos essa decomposi¢do anteriormente nas cartas coordenadas de

Fermi e em campos de Fermi.

Definicao 2.78. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = m +n,
f N = M uma imersio, onde N é uma subvariedade n-dimensional e p € N um ponto de N.
Para v € T,M denominamos vT € T,N de componente tangencial de v e v € (T,N)* de

componente normal de v.
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Note que a decomposicdo proposta acima é diferencidvel no sentido que as aplicagdes
de TM em TM dadas por

(p,v) — (p,v") e (p,v) — (p,v")
sdo diferencidveis.

Definicao 2.79. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m+n, e
f: N — M uma imersio, onde N é uma subvariedade n-dimensional. Considere ¥V a conexio
Riemanniana de M e, para X,Y campos locais de N, X,Y as extensoes locais a M. Assim,

definimos a conexio de N por
VxY = (VgY) .

Note que da Defini¢do 2.79 temos a conexdo Riemanniana de N relativa a métrica
induzida de M.
Com a préxima proposigdo comecaremos a dar estrutura para podermos definir a se-

gunda forma fundamental, o operador forma e algumas curvaturas para subvariedades.

Proposicdo 2.80. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m +n,
f + N = M uma imersio, onde N é uma subvariedade n-dimensional, e U C N um subconjunto
aberto de N. Considere X,Y € X(U), a aplicagdo B : X(U) x X(U) — X(U)*, onde X(U)*

sdo os campos diferencidveis em U de vetores normais a f(U) ~ U, dada por
B(X,Y) = V¢Y — VxY.
estd bem definida e, além disso, é bilinear e simétrica.

Demonstragido. A demonstracdo pode ser vista em [dC15, Proposi¢do 2.1, p. 140 -

141]. O

Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k =m+n, f : N - M
uma imersdo, onde N é uma subvariedade n-dimensional, p € N um ponto de N e

N € (TPN)L um vetor normal a N. A aplicagao H; : TN x T,N — R dada por

Hy(x,y) = (B(x, ), 1),
onde x,y € TyN, €, pela Proposicao 2.80, uma forma bilinear simétrica.

Definicao 2.81. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = m + n,

f N = M uma imersio, onde N é uma subvariedade n-dimensional, p € N um ponto de N e

45



46

PRELIMINARES

1 € (T,N)* um vetor normal a N. Definimos a segunda forma fundamental de f em p

segundo o vetor normal # como a forma quadrdtica IT, em T,N dada por
IT,(x) = Hy(x, x).

Definicao 2.82. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = m +n,
f : N = M uma imersio, onde N é uma subvariedade n-dimensional, p € N um ponto de N e
1 € (T,N)* um vetor normal a N. Definimo o operador forma de f em p segundo o vetor

normal 17 como a aplicagio linear auto-adjunta S, : Ty — T, N dada por

(=S;(x),y) = Hy(x,y) = (B(x,y), 7).

Com a segunda forma fundamental e o operador forma de uma subvariedade defini-
dos, podemos estudar algumas propriedades de ambos em alguns casos particulares.

Comecemos com a seguinte proposigao.

Proposicdo 2.83. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m +n,
f+ N — M uma imersdo, onde N é uma subvariedade n-dimensional, p € N um ponto de N,
x € T,N e n € (T,N)* um vetor normal a N. Considere N uma extensio local de 1 normal a
N. Entdo

Sy(x) = V.

Demonstragio. Sejam y € TyN arbitrario e X, Y as extensoes locais de x e y, respectiva-

mente, e tangentes a N. Entdo (N,Y) =0 e, portanto,

(Sy(x),y) = (=B(x, Y(p), 1) = (=VxY + Vy, N)(p) = (=VxY, N)(p) = (Y, VxN)(p)
= (Va1 ).

]

Um caso particular de imersdes que serd de grande interesse no decorrer dessa
dissertacdo é o caso de codimensdo 1, isto é, quando a imersdo é uma hipersuperficie.

Assim, considere (M, g) uma variedade Riemanniana k-dimensional, onde k =1+,
e f : N — M uma imersao, onde N é uma subvariedade n-dimensional. Seja p € N e
n e (TpN)L, 7] =1. Como S, : T,N — T,N é simétrica, existe uma base ortonormal
de vetores proprios {e1,...,en} de TyN com valores préprios reais Ay, ..., Ay, isto €,
Sy(ei) = Ajej, 1 <i < n. Além disso, se N e M sdo ambas orientaveis e estdo orientadas
entdo o vetor 7 fica univocamente determinado se exigirmos que sendo {ey,...,e,}

uma base de orientagdo para N, {ey, ..., e,, 77} seja uma base na orientagdo de M.
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Com isso podemos definir as curvaturas de uma hipersuperficie que serdo estudadas

posteriormente.

Definicao 2.84. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = 1+ n,
f + N = M uma imersdo, onde N é uma subvariedade n-dimensional, p € Nen € (TPN)L,
17| = 1. Denominamos os vetores proprios {ey, ..., en} de Sy : T,N — T,N como as diregdes
principais de N em p e os valores proprios reais Ay, ..., Ay associados aos vetores proprios

{e1,...,en} de Sy : TN — T,N como as curvaturas principais de N em p.

Definicao 2.85. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = 1+ n,
f+ N — M uma imersio, onde N é uma subvariedade n-dimensional, p € N ey € (TPN)L,
|| = 1. Considere x1(p), . . ., kn(p) as curvaturas principais de N em p. Definimos a curvatura

de Gauss-Kronecker de N em p por
GK(p) = det(S;) = ILL x;(p).

Definicao 2.86. Sejam (M, §) uma variedade Riemanniana k-dimensional, onde k = 1+ n,
f: N — M uma imersio, onde N é uma subvariedade n-dimensional, p € N e j € (T,N)=,
\n| = 1. Considere x1(p), .. ., ku(p) as curvaturas principais de N em p. Definimos a curvatura

médla normalizada de N em p pOT‘
H(p)—_—lt S)—_—l/\ +ooo A
r(S, A1+ +Ap).

Definic¢ao 2.87. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 +n,
f+ N = M uma imersdo, onde N é uma subvariedade n-dimensional, p € Nen € (TPN)L,
11| = 1. Considere GK(p) a curvatura de Gauss-Kronecker de N em p. Definimos a curvatura

total de Gauss-Kronecker de N por

G(N) = /N GKdo.

2.9 VARIEDADES COMPLETAS E O TEOREMA DE

HADAMARD

Nesta secdo vamos estudar algumas propriedades globais de variedades Riemannianas

e vamos definir as variedades de Cartan-Hadamard, que é um dos espagos ambiente

47



PRELIMINARES

no qual estudaremos os resultados obtidos por Mohammad Ghomi e Joel Spruck no
artigo “Total curvature and the isoperimetric inequality in Cartan-Hadamard manifolds”
[GS21].

Definicao 2.88. Sejam (M, §) uma variedade Riemanniana e p € M um ponto de M. Dizemos
que M é completa se a aplicagdo exponencial, expy, estd definida para todo v € T, M, em outras

palavras, se as geodésicas y(t) que partem de p estdo definidas para todo t € R.

O teorema de Hopf-Rinow vai dar-nos algumas equivaléncias para o conceito de

completeza.

Teorema 2.89 (Hopf e Rinow). Sejam (M, §) uma variedade Riemanniana e p € M um ponto.

As segquintes afirmagoes sio equivalentes:

1. M é completa.
2. expy estd definida em todo Ty M.
3. Os limitados e fechados de M sio compactos.
4. M é completa como espago métrico.
5. Existe uma sucessio de compactos K,, C M, K;; C int(Ky41) e UyKy, = M, tais que se
qn & Ky entiio d(p, gn) — 0.
Além disso, cada uma das afirmagdes acima implica que
* Para todo q € M existe uma geodésica yligando p a q com I(y) = d(p, q).

Demonstragio. A demonstragdo pode ser vista em [dC15, Teorema 2.8, p. 162 - 165]. [

Assim, como uma aplicagdo do teorema de Hopf-Rinow temos o teorema de Hada-

mard.

Teorema 2.90 (Hadamard). Seja (M, g) uma variedade Riemanniana n-dimensional, completa,
simplesmente conexa e com curvatura seccional K(p, o) < 0, para todo p € M e todo o C T, M.

Entdo M é difeomorfa a R"; mais precisamente, expy, : TyM — M é um difeomorfismo.
Demonstragio. A demonstragdo pode ser vista em [dC15, Teorema 3.1, p. 165 - 168]. [

Por causa do teorema de Hadamard temos a seguinte defini¢do para variedades de
Cartan-Hadamard.

Definigao 2.91. Seja (M, g) uma variedade Riemanniana completa, simplesmente conexa e
com curvatura seccional K(p, o) < 0, para todo p € M e todo ¢ C T,M. Chamamos M de

variedade de Cartan-Hadamard.
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2.10 TEOREMA DE CARTAN SOBRE A DETERMINA -

CAO DA METRICA

Nesta secdo apresentaremos o teorema de Cartan sobre a determinag¢do da métrica, o
qual serd utilizado algumas vezes ao longo da dissertacdo. Para isso consideremos M e
M duas variedades Riemannianas n-dimensionais e considere p € M e p € M. Escolha
uma isometria linear i : T,M — TzM. Seja V C M uma vizinhanga normal de p tal que

expp esta definida em i o exp,, L(V). Defina uma aplicagdo f : V — M por

fq) =expyoioexp,'(q),  qeV.

Para todo g € V existe uma geodésica normalizada vy : [0,t] — M com (0) = p, ¥(t) = ¢.
Indicaremos por P; o transporte paralelo ao longo de 7 de (0) a y(t). Defina ainda
¢t : T;,M — Tf(q)M por

¢1(v) = Proio P (v), veT,M,

onde P; é o transporte paralelo ao longo da geodésica normalizada 7 : [0, ] — M dada
por 7(0) = p, 7/(0) = i(+/(0)). Finalmente, indicaremos por R e R as curvaturas de M e

M, respectivamente.

Teorema 2.92. Com as notagdes acima, se para todo q € V e todo x,y,u,v € T;M tem-se

(R(x, y)u, v) = (R(@e(x), pe(y))Pr (), $1(0)),
entio f : V. — f(V) C M é uma isometria local e df, = i.

Demonstragio. A demonstragdo pode ser vista em [dC15, Teorema 2.1, p. 174 - 176]. [

2.11 O CcUT LOCUS

As propriedades do cut locus serdo melhor estudadas posteriormente, portanto aborda-
remos apenas de uma forma superficial inicialmente, pois o objetivo final é relacionar

os pontos criticos da funcdo distancia com o cut locus.

Definicao 2.93. Sejam (M, g) uma variedade Riemanniana, p € M um ponto de M e 7y :

[0, co[ = M uma geodésica normalizada com y(0) = p. Se o conjunto dos niimeros t > 0 para
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os quais d(y(0), y(t)) = t é da forma [0, to] entdo o definimos y(ty) como o ponto de corte de
p ao longo de 7. Além disso, o cut locus de p cut(p) é o conjunto de todos os pontos de corte

de p ao longo de todas as geodésicas que partem de p.
A préxima proposicado relaciona o cut locus com o conjugated-locus.

Proposicdo 2.94. Sejam (M, g) uma variedade Riemanniana, p € M um ponto de M e
v : [0, co[—= M uma geodésica normalizada com y(0) = p. Suponha que 7y(tg) é um ponto de

corte de p ao longo de vy. Entdo
1. ou y(to) € o primeiro ponto conjugado de y(0) ao longo de v,
2. ou existe uma geodésica o # <y de p a y(to) tal que I(c) = I(7y).

Reciprocamente, se (1) ou (2) se verifica, entio existe t em [0, to[ tal que ~(f) é o ponto de corte

de p ao longo de .
Demonstragio. A demonstragdo pode ser vista em [dC15, Proposi¢do 2.2, p. 296]. O

Observacao 2.95. Uma variedade Riemanniana compacta M para a qual o cut locus cut(p) de
todo p € M se reduz a um iinico ponto é chamada de variedade wiedersehen. Existe um
resultado devido a L. Green [Gre63] que as superficies wiedersehen sdo isométricas as esferas.
Este resultado foi generalizado por M. Berger e |. Kazdan [Besy8] para o caso em que a dimensdo

de M é par, e por C.T. Yang [Yan8o] para o caso em que a dimensdo de M é impar.

O préximo coroldrio nos d4 um tipo de simetria para os cut-points ao longo de uma

geodésica.

Corolario 2.96. Sejam (M, g) uma variedade Riemanniana, p,q € M pontos de M e 7y :
[0, oco[ = M uma geodésica em M tal que y(0) = p e y(a) = g. Se g € M é um ponto de corte de
p ao longo de <y entio p é um ponto de corte de q ao longo de —y; em particular, g € cut(p) se,

e somente se, p € cut(q).

Demonstragio. Segue diretamente da Proposi¢do 2.94. De fato, pois suponha que p é o
ponto de corte de g ao longo de uma geodésica vy, entdo, pela Proposicdo 2.94, ou g é
conjugado a p, ou existe uma geodésica o # «y, ligando p a g, tal que I(0) = I(y) = d(p, 9).
Em ambos os casos, o ponto de corte de g4 ao longo de — ndo ocorre depois de p.

Como I(—7) =d(p, q), concluimos que p é ponto de corte de g ao longo de —. O
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Corolario 2.97. Sejam (M, g) uma variedade Riemanniana, p € M um ponto de M e 7y :

[0, co[— M uma geodésica normalizada com ~y(0) = p. Suponha que y(tg) € M \ cut(p). Entdo

existe uma iinica geodésica minimizante ligando p a q.

Demonstragio. Segue diretamente da Proposicdo 2.94. O

O Corolario 2.97 mostra que exp, € injetiva em uma bola aberta B,(p) centrada em p

se, e somente se, o raio r € menor ou igual a distancia de p a cut(p).

Definicdo 2.98. Sejam (M, g) uma variedade Riemanniana e p € M um ponto de M. Definimos

o raio de injetividade de M como sendo
(M) = inf d(p, cut .
i(M) plg (p, cut(p))

O Corolario 2.97 mostra também que M \ cut(p) é homeomorfo a uma bola aberta
do espacgo euclideano (via coordenadas normais). Em certo sentido, isto indica que a

topologia de M esta contida no seu cut locus.

2.12 SUAVIZADORES

Nesta secdo vamos demonstrar alguns resultados sobre os suavizadores. Como estes
resultados sdo locais podemos considerar M = R"” com a métrica candnica. Nosso
objetivo agora é definir uma sequéncia generalizada de métricas Riemannianas suaves

que se aproximam de g.

51

Assim, considere f € C®(R") com suporte compacto, isto é, supp(f) = {x € R": f(x) #0} C

R é compacto e
x)dx = 1.
e

Para € > 0, defina
1 /x
€ - —
fo=G (s) '
A funcdo f¢ é chamada de suavizador padrdo. Observe que supp (f°) C R" também é

compacto, pois supp(f) é compacto e f¢ e f diferem somente por uma homotetia e

/JRn f i = el/m f G) dx = ;/R fy)e'dy = /IR fly)dy =1
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Definimos agora, para uma funcdo /# : R” — R continua, o produto de convolugdo
he : R" — R, por

) = (e £ () = [ BF e =y,

Note que o produto de convolugdo definido acima estd bem definido pois h(y) fé(x — y)
é continua e ndo nula somente num conjunto compacto.

Com a defini¢cdo de produto de convolugdo tomaremos a sequéncia generalizada de
métricas Riemannianas por (g¢). A seguir provaremos o desejado, isto €, que (g¢) € uma

sequéncia generalizada de métricas Riemannianas suaves que se aproximam de g.

Lema 2.99. Seja (M, §) uma variedade Riemanniana com métrica de classe C'!. Considere a

sequéncia generalizada (g.), onde g¢ é dada pelo produto de convolugdo de g. Afirmamos que
1. g¢ € CP(R").
2. g — g uniformemente em todo V. C R" compacto.

Demonstragdo. (1): Afirmamos que para x,v € R" arbitrarios com |v| = 1 temos que
ags N () = of
Bew= (9L )= [ s - (61)

Como f¢ € C®°(R") e g € C1! segue-se de (61) que g € C*(R") como requerido.
Agora, vamos provar que para x, v € R" arbitrérios com |v| = 1 vale (61).
De fato,

lim Qe(x + hv) — ge(x)
h—0 h

=£gl (ge(x + hv) — ge(x))

m i ([ s -y~ [ swrte-nay)
-~ tim - /Wg<y><f€<x+hv—y>—ff(x—y))dy)
i (ot (ar (™) s (7)) )
(oot (r(222) 1 (22 o

ho — —
1 () ()
= | im [ &) dy (62)

e | h—oJRrn h
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Considere {j,(x) = ¢(y) h €0V

mos que {, — ¢, quando h — 0, e |{;,(x)| < y(x), onde v : R” — R é integravel.
De fato,

f<L:_y)_f<x;y)ec<x) sy (*5Y)- Afirma-

;1335 Cn(x) = %li’% gy)

1.
= g(y)g Ilclm

o ()

Considere ¢(x) = Y77, Como € C*(R") temos que Df(x) é continua e, pelo
¥ c q p

=8(y)
= {(x)

Teorema de Weirstrass, limitada em um conjunto compacto, isto é, para t € [0, /1] existe
x+to—
Df (—8 Y ) -0

h
x4+ o) — ()| = ‘ / %tp(ﬂtv)dt‘

M € R" tal que < M, logo

= ‘/Oh Dtp(x+tv)-vdt|

< /h]Dlp(x+tv)-v]dt
Df(x+tv—y) .

<_/ Mdt
€ Jo

< dt
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Consequentemente,

ho — —
Gl = g(y)f (“ : y) _f<¥)

)ll’(x + hv) — P(x)

= |8y

| |1P(X+h — ()|

18(v) 7

Mh
< lgsW)| m

Portanto, tomando y(x) = | g(y)| |h| temos que |{n(x)| < (x), com 7 integréavel, pois é
constante.
Deste modo, podemos aplicar o Teorema da Convergéncia Dominada em (62) e

obtemos que
hv —y X—y
() ()
ge(x+hv) —ge(x) 1 | . € €
1113(1) h Tt Plzlir(l) R" s) h ay
ho — _
| () ()
o | e SO h 4
110f
/ ()e”sav< € )dy
= [ 5%~ pay

-5+ L.

Yy

Donde temos o desejado.

(2): Seja V. C R" compacto. Considere ¢; > 0 arbitrdrio e tome W = {x € R" :
d(x, V) < e1}. Note que V C W. Além disso, como g € C(R"), entdo g é diferenciavel
em R" e, logo, continuamente uniforme em R".

Ou seja, para todo § > 0, existe €3(J) > 0 tal que para todo x,y € W

[x—yl <er = [g(x) —gy)| < 4.
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Seja, entdo, x € V arbitrario e considere ¢y = min{e1,e;}. Note que |[x —y| < ¢g =

y € W e, portanto, |g(x) — g(y)| < 6. Logo, para todo ¢ < ¢, segue-se que

8(x) — /]R L8Wfely — X)dy’

=18(%) /m [y —x)dy — /]R sWfy - x)dy‘
- | [ s@rw—xdy— [ s - x)dy‘
= /IR g)f (y —x) —gWfy— x)dy‘

|8(x) — ge()]|

= /IR L(800) —gW)f* (v — x)dy'
< [, 18 =80l |ty = )] dy
< [ elrw=mldy

=5 [ I —vldy

=)

Como x € V foi tomado arbitrariamente, g — ¢ uniformemente em V; que também foi

tomado arbitrariamente, e, portanto, segue o requerido. O






UMA FORMULA DE
COMPARACAO PARA A
CURVATURA TOTAL DO
ENVOLTORIO CONVEXO

Nesse capitulo iremos desenvolver as ferramentas necessarias para provarmos o Teorema

4.1, que é o objetivo principal desse trabalho.

3.1 REGULARIDADE E PONTOS SINGULARES DA FUN-

CAO DISTANCIA

Nesta secdo queremos provar uma relacdo entre a regularidade de uma hipersuperficie e
a regularidade da fungdo distancia a esta hipersuperficie, e estudaremos uma vizinhanga

da hipersuperficie para entendermos esta relagéo.

No restante desta dissertacdo (M, g) ird denotar uma variedade Riemanniana completa

e conexa com dim(M) > 2.

Definicao 3.1. Sejam (M, §) uma variedade Riemanniana e X C M um subconjunto de M.

Definimos a vizinhanga tubular com raio » de X como

Ur(X) = dy ([0, 7D

Exemplo 3.2. Considere v uma curva em R? cujo traco estd na Figura 1. A vizinhanca tubular

com raio r de vy estd representada na Figura 1.
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Ur(7)

Figura 1: A vizinhanga tubular com raio r de 1.
Independente da regularidade do subconjunto temos que a fung¢do distancia a este
subconjunto é diferencidvel em quase todo ponto, como afirma o préximo lema.

Lema 3.3. Seja (M, §) uma variedade Riemanniana e X C M um subconjunto de M. Entdo dx

é lipschitz. Em particular, dx é diferencidvel em quase todo ponto.

Demonstragio. Primeiramente, vamos mostrar que dx é lipschitz. Sejam A,B C M

arbitrarios e considere a € A e b € B. Para cada x € X C M, temos que

d(a,x) < d(a,b)+d(b, x) (63)

d(b, x) < d(b,a)+d(a, x) (64)

Por (63) temos que

inf  d(a,x) < inf  d(a,b)+ inf  d(b,x)
xeX,acA,beB xeX,acA,beB xeX,acA,beB

inf d(a,x) < inf d(a,b)+ inf d(b,x)
xeX,acA acA,beB xeX,beB
d(A, X) < d(A, B) +d(B, X). (65)
Analogamente, por (64), temos que
d(B, X) < d(A,B)+d(A, X). (66)
Por (65) e (66) temos que

|d(A, X) — d(B, X)| < 1d(A, B).

Donde temos que dx é lipschitz. Segue do Teorema de Rademacher que dx é diferencié-

vel em quase todo ponto. O
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Definicao 3.4. Sejam (M, ) uma variedade Riemanniana, p € M um pontode M e X C M
um subconjunto fechado. Dizemos que pg € X é um pé da perpendicular de p em X se

valem
1. d(p, po) = dx(p);
2. A geodésica minimizante da distdncia conectando p e pg € uinica.

Em particular, note que todo ponto de X é seu préprio pé da perpendicular.

Exemplo 3.5. Considere o espago R? com a métrica Euclidiana e o conjunto X = {(x,y) € R?:

y = x%}. Seja p = (0,2) € R? um ponto. Note que o ponto p possui dois pés da perpendicular
no conjunto X; que sio os pontos pg = (\/g, %) epo= (— \/g, %) Como ilustra a Figura 2.

Po

Figura 2: Exemplo dos pés da perpendicular de um ponto sobre um conjunto.

Novamente, o préximo lema nos da resultados acerca da diferenciabilidade da fun¢ao

distancia a um subconjunto independentemente da regularidade do subconjunto.

Lema 3.6. Sejam (M, §) uma variedade Riemanniana, X C M um subconjunto fechado de M e
p € M\ X. Entio

1. dx é diferencidvel em p se, e somente se, p tem um iinico pé da perpendicular em X.

2. Se dx é diferencidvel em p entdo grad(dx) é tangente a geodésica conectando p a seu pé
da perpendicular em X e |grad(dx)| = 1.

3. Seja U C M\ X um aberto onde dx é diferencidvel pontualmente entio dx é de classe C

em U.
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Demonstragio. (1) Por [CSos, Corolério 3.4.5, p. 67-68] temos que para S C R”, um
subconjunto fechado de R", vale que dg é diferencidvel em x ¢ S se, e somente se, x
tem somente um pé da perpendicular.

Como sistemas de coordenadas preservam as propriedades de fun¢des semiconcavas
e derivadas generalizadas por [MMo2, Proposic¢do 2.10, p. 5], temos que este resultado
estende-se para variedades Riemannianas.

(2) Como dx é diferencidvel em p, pelo item (1) do Lema 3.6 temos que p tem um
tinico pé da perpendicular em X. Considere 7y a geodésica minimizante de p ao seu pé
da perpendicular em X, N o normal para fora dado pela Defini¢do 2.63 e ¢ a fungdo
distancia dada pela Defini¢do 2.63.

Pelo Lema 2.65 temos que N| ") = 7'(s) e que o(p) = dx(p); além disso, pelo item (27)
do Lema 2.66 temos que |N| = 1.

O Lema de Gauss generalizado 2.67 garante que N = grad(o).

Portanto, temos que grad(dx) = N = v/, isto é , o gradiente da fung¢do distancia a
um subconjunto é tangente a geodésica que minimiza distancia entre p e seu pé da
perpendicular. Além disso, |grad(dx)| = |[N| = 1.

(3) Seja B C R" um subconjunto fechado de R”, A C R"\ B um aberto e x € A
tal que a funcdo distancia ao subconjunto B, dg : A — R, é diferencidvel em x. Por

[CSo4, Proposicdo 3.1.5 item ¢, p. 51-52] temos que D*dp(x) é ndo vazio e, em particular,

D*dp(x) = {Ddp(x)}, onde D*u(x) = ¢ p € R" : limsup u(y) — ul) = {p,y = x) >0 ;.
y—x |]/ o x|
Por outro lado, por [MMoz, Proposigdo 3.4, p. 9] temos que a fungdo dp é semiconcava

e como D*dp(x) = {Ddp(x)} para todo x € A, temos que, por [CSo4, Proposicao 3.3.4
item e, p. 57-59], dp é de classe C! em A.

Assim, concluimos que para A C R"\ B um aberto onde dp é diferenciavel pon-
tualmente entdo dg ¢ de classe C! em A, isto ¢, o resultado anédlogo no caso em que
M =TR".

Como sistemas de coordenadas preservam as propriedades de fun¢des semiconcavas
e derivadas generalizadas por [MMo2, Proposic¢do 2.10, p. 5], temos que este resultado

estende-se para variedades Riemannianas. O]

Para ndo termos problemas de diferenciabilidade da funcdo distancia na fronteira de

um subconjunto usamos a fung¢do distancia com sinal, a qual definimos a seguir.

Definicao 3.7. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie

mergulhada em M tal que I limita um dominio Q), isto é, um subconjunto aberto de M, conexo,
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com fecho compacto e 0Q) = I'. Definimos a distancia com sinal di : M — R de I (com

relagdo a 1) por

dr() =da() —dpnal)-

De acordo com a Defini¢do 3.7, temos que

. —dr(p), sepeQ
dl'* = .
dr(p), sep &Q

De fato, notemos que se p € () entdo vale que

dr(p) = do(p) — dynalp)
=0 —dyan0)(P)
= _dl"(P);

e se p ¢ () vale que

dr(p) = da(p) — dyna(p)
= day(p) — 0
= dr(p).

Definicao 3.8. Sejam (M,g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Chamamos o conjunto de nivel (dl’i)*l(t) de hipersuperficies paralelas

exteriores de I' se t > 0, e hipersuperficies paralelas interiores de I' se t < 0.

Exemplo 3.9. Considere o espago R? com a métrica Euclidiana e a esfera St C R? de raio 5.

A Figura 3 representa a hipersuperficie paralela exterior (df)~1(2) com t = 2 da esfera St e a

hipersuperficie paralela interior (dy)~1(—2) com t = —2 da esfera Si.
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Figura 3: Exemplos de hipersuperficies paralelas interior e exterior de uma esfera.

A préxima defini¢do nos dard a defini¢do de cut locus de uma hipersuperficie, posteri-
ormente estudaremos qual a relacdo entre os pontos no cut locus de uma hipersuperficie

e os pontos singulares da func¢do distancia a uma hipersuperficie.

Além da relacdo que queremos estabelecer entre a regularidade da hipersiperficie e a
regularidade da fungdo distancia a esta hipersuperficie, vamos estabelecer também uma

regularidade minima para que a hipersuprficie e o seu cut locus sejam disjuntos.

Definicao 3.10. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Defina reg(dy) a unido de todos os conjuntos abertos de M onde cada
ponto tem um iinico pé da perpendicular em I'. Definimos assim o cut locus de I' como
cut(l') = M \ reg(dy).

Exemplo 3.11. Considere o espago R? com a métrica Euclidiana e a elipse £ C R?. A Figura 4

representa o cut locus de £, que é dado pelo segmento que une os focos da elipse &.



3.1 REGULARIDADE E PONTOS SINGULARES DA FUNQAO DISTANCIA

Figura 4: O cut locus de uma elipse.

O préximo lema estabelece uma primeira relagdo entre a classe de diferenciabili-
dade da hipersuperficie e a classe de diferenciabilidade da fungdo distancia a esta

hipersuperficie.

Lema 3.12. Sejam (M, ) uma variedade Riemanniana e I' C M uma hipersuperficie mergulhada
em M tal que T é de classe C' e limita um dominio Q) entdo dr é Cl em M\ cut(T') com
\grad(df)| = 1.

Demonstragiio. Vamos provar que di é C' em M \ cut(T). Primeiramente, note que
M\ cut(T) = (M \T)\ cut(T)) U(T \ cut)).

Afirmamos que di é Ct em (M \T) \ cut(D).

De fato, como cut(I') é o conjunto dos pontos que tem pelo menos dois pés da
perpendicular; segue-se do Lema 3.6 item (1), que cut(I') é o conjunto dos pontos onde
df ndo é diferenciavel.

Entdo, como (M \T) \ cut(I') é um subconjunto aberto em M \ I onde d;: é diferenciavel,
pelo Lema 3.6 item (3), temos que df é Clem (M \T)\ cut(I'), como requerido.

Assim, basta verificar que df é C Lem T\ cut(I).

De fato, seja p € T'\ cut(I') arbitrario e considere U uma vizinhanga aberta e conexa
de p em M que é disjunta de cut(I'). Note que tal vizinhanga existe pois M \ cut(T) =
M\ (M \ reg(dy)) = reg(d}) e reg(df) é uma reunido de abertos, portanto, aberto.

Como U é disjunto de cut(I'), cada ponto de U tem um tnico pé da perpendicular
em I'N U, pois se existisse um ponto em U com dois pés da perpendicular em I' N U,
tal ponto teria dois pés da perpendicular em I e, portanto, pertenceria a cut(I'), o que é
uma contradigdo, pois U e cut(I') sdo disjuntos por construgdo; e, entdo, U é fibrado por

segmentos de geodésicas ortogonais a I' N U.
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Seja I's = (d)"1(¢), onde € > 0 ¢é tal que T, N U # @. Note que cada ponto em ' N U
tem um tnico pé de perpendicular em I' N U, pois I: N U C U e cada ponto de U tem
um tnico pé da perpendicular em I' N U, entdo, em particular, cada ponto de I'. N U
tem um tinico pé da perpendicular em I' N U.

Primeiramente note que U \ I' é um subconjunto aberto (pois I é fechada e U é aberto)
de M\ T onde dj é diferenciavel pontualmente, pois cada ponto de U, em particular
U\ T, tem um tnico pé da perpendicular em U NT e pelo Lema 3.6 item (1) segue-se
que dy é diferenciavel pontualmente. Portanto, pelo Lema 3.6 item (3) temos que df é
Clem U\T.

Logo, como dj: é C! em U \ T segue-se, pelo Teorema da Fungéo Implicita, que Te N U
é uma hipersuperficie.

Note também que I'. N U é ortogonal aos segmentos de geodésica que fibram U,
pois pelo Lema 3.6 item (2) grad(d;) é tangente a tais segmentos de geodésicas e, além
disso, grad(dy) é ortogonal a I'. N U. Por outro lado, temos que esses segmentos nao
intersectam uns aos outros, pois caso eles se intersectassem teriamos um ponto (a
interseccdo) em U com dois pés da perpendicular em I' N U, o que é uma contradicao,
portanto segue-se que U € disjunto de cuf(Is). Assim df_¢€ diferenciavel pontualmente
em U \ I'; e pelo Lema 3.6 item (3), dr é Clem U\T..

Agora, note que dp(p) = dr (p) +¢, para todo p € U.

De fato, temos trés possibilidades, vamos analisa-las separadamente. Primeiramente,

denotemos por Q C M o conjunto tal que T = 9Q.

* Considere p € Utalque p ¢ Qe p ¢ Q. Seja py € T 0 pé da perpendicular de p
em I'.. Logo
dr(p) = dg(p) — dppa(p)
= dg(p)
= da(p) — da(po)-

Mas como dr(p) = da(p) — dm\a(p) = da(p) e dr(po) = da(po) — dma(po) = dalpo)
temos que

dr.(p) = da(p) — da(po)
=dr(p) —&.

Consequentemente, df(p) = dr (p) +&.
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 Considere p € U talque p € Qe p ¢ Q. Seja py € T'e 0 pé da perpendicular de p

em I'e. Logo
dr,(p) = da(p) — dpna(p)
—dyna(P)

—(da(po) — da(p))
= da(p) — da(po)-

Mas como dr(p) = da(p) — dp\a(p) = da(p) e dr(po) = dalpo) — dnapo) = dalpo)
temos que
dr,(p) = da(p) — da(po)
=dr(p) —e.

Consequentemente, dp(p) = dr (p) +e.

 Considere p € U tal que p € Qe p € Q. Seja py € T 0 pé da perpendicular de p

em I'.. Logo
dr(p) = dg(p) — dpn5(p)
= _dM\ﬁ(p)
= —(dm\a(p) +dalpo))
= —dpyna(p) — da(po).

Mas como dr(p) = da(p) — dana(p) = —dana(p) e dr(po) = da(po) — danalpo) =
da(po) temos que
dr,(p) = —dyna(p) — dalpo)
=dr(p) — &

Consequentemente, df(p) = dr (p) +&.

Portanto, df é C! em p € T'\ cut(I); como tal p € T'\ cut(T) foi tomado arbitrariamente,
segue o requerido.
Note que |grad(d})| = 1 segue diretamente do Lema 3.6 item (2). O

Como queremos estudar como a classe de diferenciabilidade da hipersuperficie

interfere na intersecgdo da propria hipersuperficie com o seu cut locus. Assim, se I' é de
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classe C!, podemos ter que I e cut(I') sejam nao disjuntos. De fato, considere o espaco
R? com a métrica Euclidiana e T = {(x,y) € R?: y = |x|%} Note que I' é de classe C.
De fato, considere f(x) = |x\% e note que
3x
—I x
Fl(x) = { 2V/|x]
0, x =0.

0

o

Além disso, lim f '(x) = 0. Donde segue-se que f € C! e, portanto, I' é de classe C!. Note
também que cut(T') = {(0,y) € R?: y > 0}, logo I' N cut(T') = {(0,0)}.

Por outro lado, provaremos a seguir que I ser de classe C1! é uma condicdo necesséria
e suficiente para que tenhamos uma vizinhanga de I' onde cada ponto tem um tinico pé
da perpendicular em I'. Em particular, teremos que I' N cut(I') = @. Além disso, nesse
caso, dy é de classe cli,

Voltando ao contra-exemplo apresentado note que I ndo é de classe C1/1.

De fato, considere f(x) = \x\% e note que

flx) =3 2V |
0, x =0.

0

o

Vamos mostrar que f’ ndo é Lipschitziana. Seja 0 < x < 1 arbitrério e observemos que
3x 3(—x)

2V/Ix 2/

- |3 (Ee V)

=3x

> 2 2

[f'0) = f(=x)] =

3
=5 lx= (=)

Logo, segue o desejado.
A seguir faremos algumas defini¢des sobre subconjuntos de uma variedade Rieman-
nina que estdo relacionados a uma hipersuperficie, como o eixo medial ou o esqueleto.

Posteriormente apresentamos um lema que relaciona estes conjuntos apresentados.

Definic¢ao 3.13. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Definimos o eixo medial de I' como o conjunto de pontos em M com

miiltiplos pés de perpendicular em I'. Denotamos-o por medial(I').
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Afirmamos que

cut(l') = cl(medial(T)). (67)

De fato, sejam Ay C M,A € L C IN, abertos onde cada ponto tem um tnico pé de

perpendicular. Primeiramente, note que reg(dy) = U A,. Além disso, pelo Lema 3.6

A€L
item (1), temos que A, é o conjunto dos pontos onde d; é diferencidvel. Assim, por

definicdo, M \ A, é um conjunto fechado que contem medial(T).

Portanto,

cut(l') = M \ reg(dr)
=M\ [ Ax

A€EL

= ﬂ M\ A,

A€L
= cl(medial(T)).

Exemplo 3.14. Considere o espaco R? com a métrica Euclidiana e a elipse £ C R?. O eixo

medial da elipse £ é dado pelo segmento que une os focos da elipse £ sem os focos.

Definicao 3.15. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Denotamos por sing(dy) o conjunto dos pontos singulares de dy ou pontos

de M onde df ndo é diferencidvel.

Afirmamos que medial(I') = sing(d;) como consequéncia direta do Lema 3.6 item (1)

e, consequentemente, cut(I') = cl(sing(dr))

Definicao 3.16. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M tal que T' limita um dominio Q). Dizemos que uma esfera geodésica S C cl(2)
é uma esfera geodésica maximal se ela ndo esta contida numa esfera geodésica de raio maior
contida em cl(QY). Definimos também o esqueleto de Q2 como o conjunto dos centros das esferas

maximais contidas em cl(Q)) e denotamos-o por skeleton((2).

Exemplo 3.17. Seja v uma curva fechada em R? cujo trago estd na figura 5. Note que vy é uma
hipersuperficie que limita um dominio Q). A Figura 5 representa uma esfera geodésica maximal

S e o esqueleto de .
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skeleton({2)

Figura 5: Uma esfera geodésica maximal e o esqueleto de uma hipersuperficie.

Lema 3.18. Sejam (M, §) uma variedade Riemanniana e I' uma hipersuperficie mergulhada em
M de modo que I limita um dominio Q) tal que todo par de pontos em () é conectado por uma

tinica geodésica em M. Assim,
medial(I') N Q) C skeleton(Q)) C cl(medial(I') N Q).

Demonstracdo. medial(I') N Q) C skeleton(Q)

Seja x € medial(T') N (). Entdo, por definicdo, x tem pelo menos dois pés da perpendi-
cular em T, sejam y,y" € T tais pés da perpendicular de x em I'. Como d(x,y) = d(x,y’)
considere Sy a esfera geodésica de centro x que passa por y e /.

Suponha que existe uma esfera S’ C cl(Q) tal que S’ contém Sy. Note que y, iy’ € S,
pois como S’ contém S, se y e ' ndo estiverem em S’ teriamos que existiria pelo menos
um ponto z € S’ tal que z ¢ cl(Q)), 0 que ndo é possivel pois S’ C cl(Q)). Considere
entdo duas geodésicas v e 7/ em cl(Q)) que se iniciam em y, i/, respectivamente, e sdo
ortogonais a S. Tais geodésicas se encontram em x pela primeira vez, pois, por hipotese,
todo par de pontos em Q) é conectado por uma tnica geodésica em M. Mas 7y e 7/
também sdo ortogonais a ', pois, novamente, se ndo fossem existiria um ponto z € S’
tal que z ¢ cl(QQ). Portanto, x é o centro de S’ também. Consequentemente, Sy = S/,
donde temos que S, é maximal. Logo, x € skeleton((}).

skeleton(Q)) C cl(medial(I') N Q)

Seja x € skeleton((}). Entdo existe uma esfera maximal S € cl({2) com centro em x. Por
(67), é suficiente mostrar que x € cut(I'). Suponha, por absurdo, que x ¢ cut(I'). Entao,

pelo Lema 3.6 item (3), dr é C! em uma vizinhanca U de x. Além disso, pelo mesmo
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Lema item (2), grad(dr) # 0 em U e suas curvas integrais sdo geodésicas minimizantes
que conectam os pontos de U com seus tnicos pés de perpendicular em I'.
Disto segue que a geodésica que conecta x ao seu pé da perpendicular em I' pode ser

estendida para uma geodésica maior. Isso contradiz a maximalidade de S. O

A fim de querer obter relacdes entre a classe de diferenciabilidade de uma hiper-
superficie e a classe de diferenciabilidade da funcdo distancia a essa hipersuperficie
apresentamos o préximo lema. Este lema ainda ndo apresenta o melhor resultado
possivel, isto é, podemos refinar as classes de diferenciabilidade apresentadas nele e o

faremos adiante.

Lema 3.19. Sejam (M, §) uma variedade Riemanniana com g de classe Ckk>2eTcM
uma hipersuperficie merqulhada em M tal que T limita um dominio Q). Se T é C¥, k > 2, entdo
di é C¥ em M\ cut(T).

Demonstragio. Primeiramente note que como I' é de classe Ck k > 2, temos, em particu-
lar, que T é de classe C!. Pelo Lema 3.12 temos que d} é de classe C! em M \ cut(T'). Em
particular, pelo Lema 3.6 item (1) temos que cada ponto de M \ cut(I') tem tnico pé da
perpendicular em I'.

Sejam U = E(V) uma vizinhanga normal de T em M, p € M \ cut(T) arbitrério e pg o
seu pé da perpendicular em I, (x1, ..., x;) um sistema de cartas coordenadas de Fermi

centrado em pg e E; a segdo ortonormal de NI'. Para (g,v) € V, com v = v, E;|_, temos

Xn (E (q, Un En|q>> =0,.

Assim, como p € M \ cut(I') tem um tnico pé da perpendicular em I', temos pelo Lema

o
que x, é dado por

2.65 que

dr(p) = o(p),
onde 02 = x2.

Logo, como g é de classe ck k> 2, segue do Teorema de dependéncia diferencidvel
dos parametros de EDO’s que a aplicagdo exponencial normal de I' em M é de classe
Cck com k > 2.

Disso segue-se que x,, ¢ e, consequentemente, dr sdo de classe ck k > 2, em
M\ cut(T).

Portanto,

—dr(p), sepecQ)

dr(p),  sepgQ
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é de classe C¥, k > 2, em M \ cut(T). O

Definicao 3.20. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Definimos reach(T') = d(T, cut(l')) (= inf{d(x,y) : x € T,y € cut(T)}).

Pela Defini¢do 3.20 temos que reach(I') > r > 0 se, e somente se, existe uma bola
geodésica de raio r rolando livremente em cada lado de I em M, isto é, para cada ponto
p € I passam as fronteiras de duas bolas geodésicas B, B’ de raio r tais que B C cl(Q)), e
B'c M\ Q.

Definicdo 3.21. Sejam () C R" um subconjunto aberto de R", 0 < a« <1 ek > 1. Dizemos
que uma funcio f : Q) — R é de classe C** em Q) se f ¢ de classe C* em Q) e o sequinte supremo
é finito
&) (x) — £k
sup L0 = SO

x,yeq) |x - y|a
x#y

Da Definigdo 3.21 temos, em particular, que se uma funcdo f : R” — R é de classe
Cl! entdo f é de classe C! e sua diferencial é Lipschitz. De fato, considere o supremo
dado na Definicdo 3.21 igual a L € R. Assim, para todo x,y € R”, tomando a norma

do maximo em R", temos que

£'@ — fb)
ot

a,beR"

=L = |f'(0)—f Wl < Llx—yl.

Agora podemos definir uma hipersuperficie de classe C¥* tanto para hipersuperficies

de R" quanto para hipersuperficies de uma variedade Riemannina.

Definigdo 3.22. Seja Q C R" um dominio e T = 9Q). Dizemos que Q e T sdo de classe C**,
0<a <1lek>1,secada pontodeI tem uma vizinhanga U de modo que I' N U é o grdfico de

uma fungdo de classe C**.

Definicao 3.23. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M. Dizemos que T é C1', se ela é C1' em cartas locais, isto é, para cada p € M
existe uma vizinhanga U de p em M e um difeomorfismo C* ¢ : U — R" tal que (I N U) é
CY em R™. Uma fungdo u : M — R é chamada localmente C''* em alguma regido X, se u
¢ CY! em uma cobertura de X por cartas locais. Se X é compacto, entdo dizemos que u é C1/!

proximo a X.
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O préximo lema nos da uma equivaléncia que relaciona a classe de diferenciabilidade
da hipersuperficie, com seu reach e a classe de diferenciabilidade da fungdo distancia a

esta hipersuperficia; que é o resultado que buscdvamos desde o comego da segéo.

Lema 3.24. Seja (M, §) uma variedade Riemanniana e I' C M uma hipersuperficie merqulhada

em M tal que T limita um dominio Q), isto é, Q) = I'. As sequintes condigoes sio equivalentes:
1. reach(I') > 0.
2. Téch.
3. df é CY proximoaT.

Demonstracdo. (1) = (2)

Segue diretamente de [Lytos, Proposi¢do 1.4, p. 203].

2) = (1)

Por [Alb15, Teorema 1.6, p. 401 e p. 404-405] temos, em particular, que cut(I') CC
M\T. Como T é fechado temos que d(T’, cut(I')) > 0, isto é, reach(I') > 0.

(G) = ()V Q)

Seja p € I' e U uma vizinhanga de p em M tal que u = dj é C'! em U. Note que tais
p € I' e U existem por hipotese.

Pelo Lema 3.6 item (2), |grad(u)] =1 em U \T.

Seja X € TyM tal que X L Y,VY € T,I" e |X(p)| = 1. Considere a geodésica 7 tal

que ¥(0) = p e 9/(0) = X(p). Tomemos p, = 7y <%) Pelo Lema 3.6 item (2) temos que

v (%) = grad(u)(px), Vk € IN. Como u = dy é Cl! em U, em particular, segue-se que

grad(u) ( lim pn>

n—o0

|grad(u)(p)|

= | lim grad(u)(p)
— |1 (1

= |y (z)\

e (i L
=17 (,}Efo‘o z)‘

17 (0)]

= |X(p)|
-1
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Portanto, |grad(u)| # 0 em U. Em particular, I' N U é um conjunto de nivel regular de u,

e é C! pelo Teorema da aplicagdo inversa.

Seja ¢ : U — R" um difeomorfismo. Entdo ¢(I' N U) é um conjunto de nivel regular
de uma fungdo uo ¢~ : R" — R. Como u o ¢~! é localmente C!'! temos que ¢(I' N U) é
localmente C1'! em R". Portanto, ' é localmente C1-1.

(HV@) = 6

Seja p € I' e U uma vizinhanga de p em M tal que cada ponto de U tem um tnico
pé da perpendicular em I', note que tal vizinhanca de p existe pois reach(I') > 0. Além
disso, como T é C"! por hipétese, em particular, é C!. Logo, pelo Lema 3.12, u é C! em
M\ cut(T'). Portanto, u é C! em U, pois U e cut(T') sdo disjuntos por construgao.

Seja T = u~!(e), onde £ > 0 é tal que T'. N U # @. Note que cada ponto em I, N U tem
um tnico pé de perpendicular em I' " U, pois I': N U C U e cada ponto de U tem um
tnico pé da perpendicular em I' N U, entdo, em particular, cada ponto de I'. N U tem um
tinico pé da perpendicular em I N U. Portanto, reach(T; NU) > 0 e, logo, TN U é C1L.

Seja ¢ : U — R" um difeomorfismo e note que temos uma fibragdo de R" por
hipersuperficies C!'! dadas pelos conjuntos de nivel de u o ¢~ 1.
grad(uo¢~1)

|grad(u o ¢p—1)|
47_1) é localmente lipschtz.

Como

é ortogonal a esses conjuntos de nivel C!!, segue que grad(u o

De fato, sejam x1,x; € ¢(U) e note que como temos uma fibragdo de IR" por hiper-
superficies Cl'! dadas pelos conjuntos de nivel de u o ¢! existem e1,¢, > 0 tais que
x1 € (wodp ) er)exs € (wogp 1) (ep), onde (uop~1)"I(e;), i = 1,2, sdo hipersuper-
ficies de classe C',

Considere (x2)9 o pé da perpendicular de x, em (1o ¢~ 1)"!(e;). Note que a ge-
odésica minimizante da distancia conectando x; a (x2)p é uma reta, pois ¢(U) C

rad(uo ¢! rad(uo ¢! rad(uo ¢!

8 ( 4>_1) (ry) = £ ( 4>_1) grad( <P_1) (x)o) e
grad(uo ¢ ) grad(uo ¢ [grad(u o ¢~D)

grad(uo ¢ - X U o
——(x) sdo tangentes a geodésica minimizante da distancia conectando
\grad(u o ¢p—1)|
x2 a (x2)p, que é uma reta, portanto, o vetor tangente é constante.
grad(uo ¢~)
|grad(u o ¢p=1)|

R". Logo

((x2)0), pois

Consequentemente, comparar em X1 e xp é andlogo a comparar em X1

e (xp)o, isto é,

grad(uo¢=1)
|grad(u o ¢~1)]

grad(uo¢=1)
grad(u o ¢~1)|

_ grad(uo p 1)
|grad(u o ¢~ 1)

grad(uo¢1)
graduo gD

) (xz)’ = ‘ | (x1) —

((x2)o)| -
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grad(uo¢~1) ‘ or
|grad(u o ¢p—1)|
togonal a hipersuperficie (1o ¢~ 1)"1(e1) em x; e (x2)o, temos que existe L > 0 tal

Mas como (u o ¢~ 1)"!(e) é uma hipersuperficie de classe C"! e

que
grad(uo¢~1) grad(uo¢~1) -
— L — .
jgraduo g D] gradtuo g | = HA 7
Consequentemente, 1 0 ¢! é localmente C1! e d é C!! proximo aT. O

A partir do Lema 3.24 podemos obter os seguintes resultados.

Proposicao 3.25. Seja (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie
mergulhada em M tal que I limita um dominio C), isto é, 0Q) = I'. Entdo dy é localmente Cl1 em
M\ cut(T'). Em particular se T é C11, entio dy é localmente CYY em U,(T) para r = reach(T).

Demonstragdo. Sejam p € M\ cut(T) e T, = (df)1(d}(p)). Note que T, N (M \ cut()) # @,
pois p €Ty e p € M\ cut(I).

Por outro lado, cada ponto em I'y N (M \ cut(I')) tem um tnico pé de perpendicular
em I'N (M \ cut(T')), pois Iy N (M \ cut(T')) C M\ cut(I') e cada ponto de M \ cut(I') tem
um unico pé da perpendicular em I' N (M \ cut(I')), entdo, em particular, cada ponto
de I', N (M \ cut(')) tem um tnico pé da perpendicular em I' N (M \ cut(T')). Portanto,
reach(T, N (M \ cut(I'))) > 0 e, pelo Lema 3.24, diip é Cl'! préximo a p.

Agora, note que df = dl’ip +di(p) em M \ cut(T). Portanto, di é C1't em p € M\ cut(I);

como tal p € M\ cut(T) foi tomado arbitrariamente, segue o requerido. [

Proposicdo 3.26. Sejam (M, g) uma variedade Riemanniana e I C M uma hipersuperficie
mergulhada em M tal que I limita um dominio ) e reach(I') = v > 0. Considere que Ky; > —C,
para C > 0, em U,(T'). Entdo, para 6 = %,

|Hess(dy)| < v/Ceoth <\/E(5>
em quase todo ponto de Us(T).

Demonstragio. Pela Proposigdo 3.25 e o Teorema de Rademacher, d; é duas vezes dife-
rencidvel em quase todo ponto de Us(T).

Seja p € Us(I') um ponto arbitrario tal que df é duas vezes diferencidvel em p e
considere ', = (d}) 1 (dj(p)).

Entédo os autovalores de Hess(dy)(p), a menos para aquele na diregdo de grad(dy)(p),

que se anula, sdo as curvaturas principais para o conjunto de nivel I'p.
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Como, por hipétese, reach(I') = r > 0 temos que uma bola de raio r rola livremente

em cada lado de I'. Portanto uma bola de raio 6 = g rola livremente em cada lado de [p.

Afirmamos que as curvaturas principais de I', em p sdo limitadas pelas curvaturas
principais das esferas de raio 6 em U,(I'), que por sua vez sao limitadas por cima por
v/Ceoth <\/Ec5) por [Che89, Proposic¢do 1.7.1, p. 184].

De fato, considere «, ..., %,_1 as curvaturas principais de I', em p cujas respectivas
dire¢des principais sdo Ey,...,E,—1 e T1,...,T,—1 as curvaturas principais de S; em
p cujas respectivas dire¢des principais sdo Fy,..., F,_1, pois todas as dire¢des sdo
principais em S5 e T,y = T),5;.

Além disso, considere N(p) o normal a I'; em p e note que N(p) e —N(p) sdo os
normais as esferas de raio 6 em U, (I') que rolam livremente em cada lado de I'y. Seja
Hf o espaco gerado pelos vetores N(p) e E;. Note que, pelo Teorema de Whitney do
mergulho e o Teorema da transversalidade, temos que as intersegdes I1' N T, e IT' NS,
(com ambas as esferas que rolam livremente em cada lado de I'y), em uma vizinhanga
de p, sdo o traco de uma curva regular plana.

Parai =1,...,n —1, considere &; :] — ¢;,¢][— I’y a curva regular p.p.c.a. tal que
2i(0) = p, al(0) = E; e a;i(] — &, &) é o trago da curva plana Hf NI, e considere
Bi ] — &, &[— S; uma curva regular p.p.c.a. tal que ;(0) = p, Bi(0) = E; e Bi(] — &, &) é
o trago da cluva plana Hf N Ss.

Sejam, parai=1,...,n —1, K; :] —¢;,¢;[— R as curvaturas sobre M de a; em p e
T; :] — €, €[— R as curvaturas sobre B; de B; em p. Por [Lee18, Proposicdo 8.10, p. 233]

temos, parai=1,...,n—1, que
x| = |IIr,(E;, E;)| = Ki(0) e 1Ti| = |11s,(F;, Fi)| = Ti(0),

onde IIr, € a segunda forma fundamental de I', e IIs; ¢ a segunda forma fundamental
de S;.

Portanto, para compararmos as curvaturas principais de I', em p com as curvaturas
principais das esferas de raio 6 em U,(I'), basta compararmos as curvaturas das curvas
aje Biemt=0.

Assim, reduzimos nosso problema em estudar a seguinte situagdo: considere uma
curva plana 7 :] —a,a[— R? arbitréria tal que Y(0) = g e 7/(0) = v. Além disso, existem
duas circunferéncias de raio r ¢ :] — b, b[— R?e Y:]—cc[— R2 tangentes a 7 distintas
tais que ¢(0) = ¢, p(0) = g, ¢'(0) = v, Y’(0) = v.



3.1 REGULARIDADE E PONTOS SINGULARES DA FUNQAO DISTANCIA

Em uma vizinhanga de 4 podemos parametrizar -, ¢ e i como grafico das fungdes

f,g,h:]—d,d[— R da seguinte maneira:

v(s) = (s, f(5))

P(s) = (s,8(s))

(s) = (s, h(s))
Note que g(0) = f(0) = h(0), g(x) < f(x) < h(x),Vx €] —d,d[C] e f'(0) =
1 (0). Além disso,

[ ($) = 1f" ()]

9" ()] = 18"(s)]

[9"(s)| = [H"(s)]

Pelo Teorema de Taylor temos, para x €] — d,d|, que

£ = 50+ £+ 02 ), (68)
onde lim,_, rx(x) 0,

8 = 50) + g O+ S0 k), (69
onde lim,_g x(x) 0,

h(x) = h(0) + I’ (0)x + @xz +7y(x), (70)

onde lim,_,g };C(x) = 0. Mas como g(x) < f(x) < h(x), Vx €] —d, d[ temos de (68), (69) e
(70) que £"(0) < £"(0) < g"(0).
Portanto, como |¢”(0)| = |K"(0)| = %, temos que |7"(0)| < %, isto é, a curvatura da

curva v é limitada superiormente pela curvatura da circunferéncia. O
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3.2 NOCOES DE CONVEXIDADE EM VARIEDADES

DE CARTAN-HADAMARD

Nesta secdo queremos estabelecer uma relacdo entre a curvatura total de uma hi-
persuperficie convexa em uma variedade de Cartan-Hadamard n-dimensional com
a curvatura total de uma hipersuperficie d-convexa em uma variedade de Cartan-
Hadamard (n + 1)-dimensional. Para isso, comecemos definindo nossos objetos de

interesse.

Definicao 3.27. Sejam (M, g) uma variedade Riemanniana e X C M um subconjunto de
M. Dizemos que X é (geodesicamente) convexo se para todo par de pontos p,q € X existe
uma tnica geodésica vy :] — ¢, e[— M tal que v ([t1,t2]) C X, ¥(t1) = p e y(t2) = q, com
t,tr €] —¢,e[et] < ty.

Definicdo 3.28. Sejam (M, g) uma variedade Riemanniana e X C M um subconjunto de M
convexo. Dizemos que X é estritamente convexo se para p,q € 0X ndo existe uma geodésica
v :] — ¢ e[— M tal que v ([t1,t2]) C 90X, y(t1) = pe y(tp) =g, com ty,t, €] — ¢, e[ ety < .

Exemplo 3.29. Note que o subconjunto de X C R?* dado por X = {(x,y) € R> : =1 < x <
1,—1 <y <1} é um conjunto convexo mas que ndo é estritamente convexo. Por outro lado,
o subconjunto Y C R? dado por Y = {(x,y) € R? : x> + y*> < 1} é um conjunto estritamente

convexo. Como ilustra a Figura 6, onde <y;, i = 1,2,3,4, sdo exemplos de tragos de geodésicas.

X Y

Figura 6: Um conjunto convexo e um conjunto estritamente convexo.

Definicdo 3.30. Sejam (M, g) uma variedade Riemanniana e X C M um subconjunto de M
convexo, compacto e com interior nio vazio. Chamamos de hipersuperficie convexa a fronteira
0X de X.
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Definicao 3.31. Sejam (M, §) uma variedade Riemanniana e u : M — R uma fungdo. Dizemos
que u é convexa se para toda geodésica 7y :] — €,e[— M e para todos t1,t) €] —¢,¢[, € > 0,
tais que (1 — A)t; + Aty €] — ¢, €[ para todo A € [0, 1] temos que

uoy((1—=At+Atr) < (1 —A)uoy(ty)+ Auoy(t). (71)

Além disso, dizemos que u é estritamente convexa se (71) é estrita e dizemos que u é concava

se —u é convexa.

Observacao 3.32. Sejam (M, g) uma variedade Riemanniana e u : M — R uma fungio de
classe C%. Afirmamos que u é convexa se, e somente se, Hess(u) é positiva semi-definida.

De fato, considere 7y :] — €, e[— M uma geodésica arbitrdria. Assim, uoy:] —¢,e[— R é
convexa se, e somente se, u é convexa. Mas u o vy é convexa se, e somente se, (uo y)" > 0, essa
afirmagdo é conhecida da andlise de fungdes convexas e segue diretamente do Teorema de Taylor.

Por fim, basta notarmos que (u o 7)" > 0 se, e somente se, Hess(u) é positiva semi-definida.

Definicao 3.33. Sejam (M, §) uma variedade Riemanniana, X C M um subconjunto de M e
u: M — R uma fungio. Dizemos que u é convexa no conjunto X se u é convexa em todos os

segmentos de geodésica contidos em X.

Novamente vamos relacionar uma propriedade de um subconjunto de uma variedade
de Cartan-Hadamard com uma propriedade da fungdo distancia a este subconjunto,

neste caso a propriedade sera a convexidade.

Lema 3.34. Seja (M, §) uma variedade de Cartan-Hadamard e X C M um subconjunto convexo

de M. Entdo dx é convexa.

Demonstragio. Notando que variedades de Cartan-Hadamard sdo variedades completas,
conexas e com curvatura (seccional) ndo positiva. Portanto, sdo espagos CAT(0) e por

[BH9g, Coroléario 2.5 item 1, p. 178] temos que dx é convexa. ]

Observacao 3.35. Assim, pelo Lema 3.34 podemos provar que uma esfera geodésica é uma
hipersuperficie convexa. Considere (M, §) uma variedade de Cartan-Hadamard e S C M uma
esfera geodésica.

De fato, Note que S = 0B, onde B é a bola geodésica correspondente. Logo, se B C M é
convexa entdo S é uma hipersuperficie convexa como requerido.

Para mostrarmos que a bola geodésica B C M é convexa considere B C M de raio r. Assim,
B={g¢c€ M:dyq) < r}, ondedy(-) = d(p,-), além disso, por [BH99, Proposicao 2.2, p.
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176], temos que d, é uma fungio convexa. Portanto, considere p1,p2 € Be vy : [t1,t2] = Mo
segmento de geodésica tal que y(t1) = p1 e y(t2) = p2. Note que para todo p € y([t1, t2]) existe
um A € [0,1] tal que y((1 — A)ty + At2) = p. Logo, da convexidade de d,, temos que

dp(p) = dp(7(1 — M)t + A3))
< (1= Mdp(y(t)) + Adp(7(£2))
= (1 = A)dp(p1) + Adp(p2)
<(I—-ANr+Ar

=T
Donde segue-se que p € B e, portanto, B é convexo.

O lema anterior relacionou a convexidade de um subconjunto de uma variedade de
Cartan-Hadamard com a convexidade da fungdo distdncia ao subconjunto, entretanto
podemos estender essa relacdo para a fungédo distancia com sinal.

Seja (M, g) uma variedade Riemanniana e X C M um subconjunto de M convexo,
limitado e com interior ndo vazio. Note que se M = R" temos que djy é convexa em X.

De fato, sejam x,y € X arbitrarios e defina xy = Ax+(1 — A)y, A € [0,1], isto é, x, é
um ponto do segmento de reta que une x e y. Note que x, € X, pois X é convexo.

Definamos rx = dp qx) (%), 1y = dpp o) € ra = Arx + (1 — A)ry. Note que By, (x) C
cl(X) e By, (y) C cl(X) por definigdo. Além disso, By, (x)) C cl(X).

De fato, considere z € B, (x,) e defina

,sery=0,

T'x
zx:x+r—(z—xA)

7‘}))( : , sery #0.
Zy=y+—(z—x
y=Y m A

Note que Azy + (1 — M)z, = z. De fato, se ry = 0 temos que x, = z e, portanto,
Azy +(1 = A)zy = Ax +(1 — A)y = x) = z. Por outro lado, se ) # 0 temos que
rx ry
Azy+(1=Nzy=A(x+—=(z—x)) | +(A=A)|y+=(z—x))
A A
Ary+(1—A
O )

=Ax+(1—A)y+

r
=xA+—)‘(z—xA)=z
A
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Além disso, note que zx € B, (x) e zy € B, (y). E, logo, By (xy) C ABy(x)+ (1 —

MBy, (y) C cl(X). Assim, como X é convexo, em particular, temos que

dancio(*a) = dan,, (x)(X2)
> Ty
= Ary+(1 = M)ry
= A ciex) (%) + (1 = A ciex)Y)-

Portanto, dp ¢(x)(+) € uma fungdo concava e dix (") =dax)(-) — dM\cl(X)(') = —dynax)()
é uma fungdo convexa.

Mais geralmente, temos por [Sakg6, Lema 3.3, p.214-215] que para M, uma variedade
Riemanniana tal que a curvatura de M em X é ndo negativa, dSX é convexa. Contudo,
se a curvatura de M em X é estritamente negativa, d3, pode ndo ser convexa; por
exemplo, tome X a regido no plano hiperbélico entre um par de geodésicas que nao se
intersectam.

Assim, podemos definir o outro objeto de interesse desta secao.

Definicao 3.36. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie

mergulhada em M tal que T' limita um dominio (). Dizemos que I' é d-convexa se dy. é convexa
em ().

Definicao 3.37. Sejam (M, g) uma variedade de Cartan-Hadamard. Definimos uma horoesfera
como o limite de uma familia de esferas geodésicas cujos raios vdo para o infinito, e uma horobola

é o limite da familia de bolas correspondentes.

Exemplo 3.38. A Figura 7 ilustra um exemplo de horoesfera S em H? no modelo de semi-plano

superior.

Figura 7: Horoesfera em H? no modelo de semi-plano superior.
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Observacao 3.39. A fungio distincia a uma horoesfera é uma funcio de Busemann; que sdo

fungdes convexas e de classe C>.

Defini¢ao 3.40. Seja (M, g) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie
merqulhada em M tal que T limita um dominio (). Dizemos que I é uma hipersuperficie
h-convexa se para cada ponto de I' passa uma horoesfera que contém T', isto é, I estd contida na

respectiva horobola.

O préximo lema estabelece uma relacdo entre a h-convexidade e a d-convexidade de

uma hipersuperficie.

Lema 3.41. Sejam (M, g) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie

mergulhada em M tal que T limita um dominio Q. Se T é h-convexa e C1! entiio T é d-convexa.

Demonstragio. Seja q € I' um ponto arbitrario e considere S; a horoesfera que passa por
g e cuja horobola correspondente B ¢ tal que I' C B,.
Seja p € () um ponto arbitrario e py seu pé da perpendicular em I'. Considere S, a

horoesfera que passa por g e cuja horobola correspondente By, € tal que I' C By,. Entéo
dr(p) = da(p) — dana(p) = —damalp) = —dr(p) = —d(p, po) = —ds, (p)
= dg, (p) — g, (P) = ds, (p).
Por outro lado, como I' C By, para todo p € (), temos que dr(p) < ds, (p). Entdo
dr(p) = da(p) — dyna(p) = —danal(p) = —dr(p)
> —ds, (p) = dp, (p) — s, () = 5, (p):

Portanto, temos que df(p) = sup ger d;q(p), para todo p € Q2. Como d;q ¢ uma funcado
de Busemann, dgq é convexa; donde segue-se que di é convexa em (). Logo, I' é

d-convexa. ]

A volta do Lema 3.41 nem sempre é verdadeira. Por exemplo, para um segmento de
geodésica arbitrario no plano hiperbdlico, existe r > 0 tal que a hipersuperficie tubular
de raio r sobre esse segmento é d-convexa, mas ndo h-convexa.

Entdo, em resumo, temos, para variedades de Cartan-Hadamard, que
{hs. h — convexas} & {hs. d — convexas} & {hs. convexas},

onde hs. é uma abreviagdo para hipersuperficie.
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Vamos construir uma hipersuperficie d-convexa em uma variedade de Cartan-
Hadamard (n + 1)-dimensional a partir de uma hipersuperficie convexa de uma varie-

dade de Cartan-Hadamard n-dimensional.

Observacao 3.42. Sejam (M, g) uma variedade de Cartan-Hadamard, entdo M x R com a
métrica produto é uma variedade de Cartan-Hadamard. Além disso, M C M X R é uma
hipersuperficie totalmente geodésica.

Sejam I C M uma hipersuperficie convexa que limita um dominio convexo (2 e ¢ > 0.
Considere T; a hipersuperficie paralela de Qx em M x R de distancia ¢, isto é, Te = {p € M x R :
(uq)~1(e)}, onde uq é a fungdo distincia, na variedade M x R, a hipersuperficie Q.

Afirmamos que T, é uma hipersuperficie d-convexa em M x R.

De fato, pelo Lema 3.34 temos que uq é convexa. Mas como, 9Q) = T, com Q = {p €
M X R :uq(p) < e}, temos que ui é convexa em Q, pois uq é convexa.

Primeiramente, note que para p € Qe p' € Te 0 pé da perpendicular de p em T, temos que

ui(P) = ug(p) — upyralP) = ~tyr\aP)
= —(ua(p") — ua(p)) = ua(p) — &
Assim, considere p1, py € Qe 7y : [t1,t2] = M x R a geodésica tal que y(t1) = p1, ¥(t2) = p2
e Y([t1, t2]) C Q. Tome p € y([t1, t2]) arbitrdrio tal que v((1 — A)t; + Atp) = p, A € [0,1].

Logo, como ugq é convexa,

ug o y((1 = Aty +Ap) = ug (p) = ua(p) — e = (uq o v((1 = M)ty + Atz)) —¢
< (= Mug oy(t) +Aug o y(f2)) — €
= (1 = Mua(p1) + Aua(p)) — &
= (1= M)(ug (p1) + &) + Mug (p2) +¢) — ¢
= (1= Mug (p1) + Aug (p2)) +€ — Ae+ Ae —¢
= (1= Mug (p1) + Aug (p2)
= (1 Mt oy(ty) + Aut o y(to)

Portanto, uz. ¢ convexa em X e, consequentemente, I'c é uma hipersuperficie d-convexa em
€
M x R.

A préxima proposicdo estabelece a relagdo desejada, isto é, uma relagdo entre a cur-

vatura total de uma hipersuperficie convexa em uma variedade de Cartan-Hadamard
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n-dimensional com a curvatura total de uma hipersuperficie d-convexa em uma varie-

dade de Cartan-Hadamard (n + 1)-dimensional.

Proposicao 3.43. Sejam (M, §) uma variedade de Cartan-Hadamard n-dimensional, I C M
uma hipersuperficie convexa C? que limita um dominio convexo Q) e T a hipersuperficie paralela
de Q) em M x R de distdncia . Entdo, quando ¢ — 0,

G(T)  am
vol (8")  wol (§"—1)°
Em particular, se G (fg> > vol (8") entdo G (T') > vol (§"1)

Note que para M = R", pelo Teorema de Gauss-Bonnet, temos que a curvatura
total de uma hipersuperficie convexa n-dimensional é igual ao volume de uma esfera

n-dimensional. Logo a Proposic¢do 3.43 é valida quando M = R".

7.L.n/2 n.n/Z
Note que vol (5"1) = nwy, onde wy, = vol (B") = R e G é a funcdo

gama.

Demonstragio da Proposicio 3.43. Sejam g € Te e p € ¢l (Q) = QNT o tnico pé da
perpendicular de g em cI (Q)).

Se p € ) entdo existe uma vizinhanca aberta U de g € T, contida em M x {e}
ou em M x {—¢}, como ilustra a Figura 8. Disso temos que GK*(g) = 0, pois cada
hipersuperficie M x {t} C M x R ¢é totalmente geodésica, isto implica que S (X) =
VxN =0, onde X € TyI': e N é o normal para fora de T’.

Figura 8: M x {e} e M x {—e¢}.

Portanto, a tinica contribui¢do para G (fg) vem dos pontos g € I cujo pé da perpen-
dicular estd em I'. Essa parte de T, é a metade de fora do tubo de raio ¢ ao redor de T, o

qual denotaremos por tube; (I').
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Assim, temos que G (fg> = G (tubef(I)).

, vol (S") ,
Definamos a, = w0l (81" Disso segue-se que
o = vol (S")
" ol (Sn1)
_ (n+1)wn41
nwp

n

n+l 212 G <§+1>
- 2
n C (n+1 +1> n/

2
4+l /2(n/2)G (g)

(1726 (")

5(3)e ()

/2
- / cos"1(0)d, (72)
—m/2

onde B é a fungdo beta. Portanto, é suficiente mostrar que, quando ¢ — 0, temos
G (tubef(T)) — anG(T).

Para isso considere N o normal unitdrio de I' que aponta para fora com respeito a {) em

M, Nt o normal unitdrio ortogonal a M em M x R e defina f¢: T x R — M x R por
Fi(p,0) = expp K (eN(p)(©)),
onde N(p)() = cos(8)N(p) + sin(8)N-+(p). Assim, definimos
tubef (T) = f¢ (T x [—m/2,71/2]).

A Figura g ilustra o tube; (T').
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Figura o: tubef (T').

Note que tube; (T') C dy L), onde dr é a funcdo distancia a I' em M x R. Portanto,
como I é C?, temos pelo Lema 3.19 que dr é C2. Donde temos que tube} (') é C>. Entdo
o operador forma de tube;(I') estd bem definido.

Por [GT14, Corolario 2.2 p. 123] temos que o operador forma de tube; (I') no ponto
f%(p, 0) na direcao de N(p)(0) é dado por

. (sp,9+(9(e) O(s)>

po = O(e) 1/e+ O(e) (73)

onde O(¢) — 0 quando ¢ — 0 e S,y € operador forma de I' em p na diregdo de N(p)(6).
Note que o operador forma em [GT14] e [Graoo] tem sinal oposto ao utilizado na
Definicao 2.82.

Os autovalores de S g sdo «;(p)cos(6) onde ;(p) sdo as curvaturas principais de I em

p-
De fato, sejam «;(p) as curvaturas principais de I' em p e E;(p) as dire¢des principais
de I' em p. Considere S, o operador forma de I' em p na direcdo de N(p). Note que o

operador S, é dado por Sy(X) = VxN(p), onde X € T,I'. Além disso, temos que

xki(p) = (Sp(Ei(p)), Ei(p)).
Portanto, temos que para X € TpI'
Spe(X) = VxN(p)(©)
= Vx(cos(O)N(p) + sin(O)N~(p))

= Vx(cos(@)N(p)) + Vx(sin(0)N*(p))
= cos(8)VxN(p) + sin(0) Vx N1 (p)
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= c0s(8)Sp(X).
Logo, obtemos que

Sp0(Ei(p)) = cos(0)Sp(Ei(p)) = cos(O)xi(p)Ei(p)-

Ou seja, «;(p)cos(f) sdo os autovalores de S, 4 cujos respectivos autovetores sdo E;(p).
Entdo, disso segue-se que a curvatura de Gauss-Kronecker de tube (I') no ponto
f&(p,0) é dada por

GK(p, 6) = det(S5, p)

= %det(Splg) + %O(s) +det(Sp,0)O(e) + O(e)O(e) — O(e)O(e)

_ %det(sp,g) +O(1) + det(S, ) Oe),

onde O(1) converge para uma constante quanto ¢ — 0. Além disso, afirmamos que

Jac(f¥)p0) = £+ O(€?), (74)

onde Jac(f)(y,0) € o elemento de drea infinitesimal de tube}(T'). Entdo, disso temos,
quando ¢ — 0, que

G(tube? (1)) = / GKedy,
tubeg (T')

K& GK* € dud
= K 0
/_71'/2 pel ]aC(f )(p,@) K

/2 1
- /—n/Z /per (Edet(Sp,e) +0O(1) +det(Sp,9)(’)(g)> <€+ O(Sz)> dudo

/2
= / det(S,,9) +eO(1) + edet(S, 0)O(e) + GKe(’)(sz)dde
—mnt/2 Jpel

/2
o / / GK(p)cos™(0)dydo
—m/2 Jpel

= Uy g(r)/

como desejado. Portanto, basta provarmos (74). Por [Graoo, Lema 3.12, p.41] temos que

Area(tube}) = %/ /1 evy(e)dudr,
rJs

onde Area(tube}) é area do tube e v,(¢) é dado por [Graoo, Lema 3.9 item (iii), p. 38 e

Teorema 3.11, p. 39], da seguinte maneira:

vu(e) _ 1 e _
e - + trace < p,e) e v,(0) = 1.
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Portanto,
]ac(fg)(p,ﬁ) = evy(e).
Mas, por (73), temos que

trace < ‘;,9) = trace (Sp ) + % +O(e).

Donde temos que
ol(e) _
vu(€)

Consequentemente, pelo Teorema Fundamental do Calculo e pela série de Taylor da

—% +trace (Spp) + % +O(e) = trace (S, 9) + O(e) = O(1).

exponencial temos que

v,(e)
Uu(g) - O(l)
con(t),,  [¢
/0 T /O O)dt

In(vu(e)) — In(vu(0)) = O)[y = O(e)
In(vu(€)) = O(e)
vu(e) = e%® =1+ O(e),
0 que implica em
Jac(f)(p,0) = €0(e) = &(1 + O(e)) = £ + O(e?),
como desejado. O

Coroldrio 3.44. Sejam (M, §) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie

d-convexa C? que limita um dominio convexo Q) tal que
G() > vol(8" 1)

entdo para A C M uma hipersuperficie convexa C> que limita um dominio convexo () temos que
G(8) > vol(S" ™)

Coroldario 3.45. Sejam (M, §) uma variedade de Cartan-Hadamard n-dimensional eI’ C M

uma hipersuperficie d-convexa C? que limita um dominio convexo Q tal que
G(r) = vol(s" ™)

entdo para N uma variedade de Cartan-Hadamard k-dimensional, k < n, e A C N uma

hipersuperficie convexa C? que limita um dominio convexo Q) temos que

G(B) > vol(8" )
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3.3 UMA FORMULA DE COMPARAGCAO

Nesta se¢cdo queremos encontrar uma férmula de comparagdo para a curvatura total de
hipersuperficies.

Seja (M, g) uma variedade Riemanniana n-dimensional e u : M — R uma funcédo de
classe C11 em M. Entio, pelo Teorema de Rademacher, u é duas vezes diferencidvel em
quase todo ponto de M.

Sejam p € M um ponto no qual u seja duas vezes diferencidvel e E;, i = 1,...,n,
um campo referencial ortogonal suave em uma vizinhanca V de p. O gradiente de
u em U é dado por grad(u) = u;E; e o operador hessiana de u em p aplicado em
um campo X € X (M), cujas coordenadas sdo dadas por X = Y, X'E;, é dado por
V2(u)(X) = u;; X'E;, onde

u; = (grad(u), E;) e u;j = Hess(u)(E;, Ej). (75)
Por outro lado, temos também que

ujj = Hess(u)(E;, Ej)
= (Vg,grad(u), Ej)
= (VEukEg, Ej)
(urVEEx + Ei(ur)Ex, Ej)
ug(VEEx, Ej) + Ei(ug)(Ex, Ej)
Ei(ur)oxj + (VEEx, Ej)uk
= Ei(uj) + (Vg Ex, Ej)ug
= Ej(u;) + (VE,E, E >
= Ej(u)) + < A{E Ei) — (VE, El,Ek>>
= Ej(u;) — (VE,Ei, Ek> (76)

Podemos assumir que (V E E)(p) =V E; Ei(p) =0, isto é, E; é um referencial geodésico

em p. Entdo, por (76) temos que

uij(p) = (Ej(u;) — (Vg Ei, Ex)ur)(p)
= (Ej(u))(p) + (VEEi(p), Ex(p))ux(p)
= (Ej(u:))(p) (77)
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O cofator de uma matriz quadrada (4;;) € a matriz (a;;) dada por (—1)*/ vezes o

determinante da matriz obtida removendo-se a i-ésima linha e a j-ésima coluna de (a;;).

Definicdo 3.46. Seja (u;j) dada por (75). Defina o operador de cofator associado a hessiana
de u por T" : TyM — T, M dado por (7;]’.“’) = (1;)).

Observacao 3.47. Note que se 0 operador hessiana V(1) é ndo degenerado entdo (V?(u))~1(X) =
u'VIE;, onde (u") = (u;j)~'. Note também que V(1) = (u;j) é simétrica. Da dlgebra linear,
para uma matriz quadrada invertivel, temos que CT = det(A)A~', onde CT é a transposta da

matriz de cofatores da matriz A. Logo,

(Ti) = (i)
= (det((uij)(u")T
= det(V*(u))(u")
= det(V2(u))(V2(u) . (78)
Nesse caso, temos que
TH(X) = (T)XIE; = det(V>(u))(V*(u) " (X) (79)

Definicao 3.48. Sejam (M, §) uma variedade Riemanniana, p € M um ponto arbitrdrio e
u: M — R uma fungio de classe C' em uma vizinhanga de p tal que grad(u) # 0. Dizemos
que o conjunto T = {q € M : u(q) = u(p)} = u='(u(p)) é o conjunto de nivel regular de u

préximo a p.

Vamos relacionar as curvaturas principais de um conjunto de nivel regular de uma

fungdo com os coeficientes da matriz hessiana desta mesma funcao.

Observacao 3.49. Sejam (M, g) uma variedade Riemanniana n-dimensional, p € M um ponto

arbitrdrio e u : M — R uma fungio de classe C' em uma vizinhanca de p tal que grad(u) # 0.
d
Considere I' 0 conjunto de nivel regular de u proximo a p. Note que é%dg; gera um campo

vetorial normal a I' préximo a p.

Considere E;, 1 =1,...,n — 1, as direcoes principais de I em p. Entdox;, 1 =1,...,n—1,

grad(u)

as correspondentes curvaturas principais de I em p com respeito a >————, sdo dadas, para

\grad(u)|’
I=1,...,n—1, por:
3 grad(u) T
= (v (S
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_ grad(u).

- (v (iaa) &)
1

= Tgrad(@)] (VE,grad(u), E)

- erzss(u)(Ezl Ep)
U

" Jgrad(u)]

Lema 3.50. Sejam (M, g) uma variedade Riemanniana n-dimensional, p € M um ponto

(80)

arbitrdrio e u : M — R uma fungdo de classe C*' em uma vizinhanga de p tal que grad(u) # 0.
Considere T' o conjunto de nivel reqular de u proximo a p. Suponha que I' seja duas vezes
grad(u) p
|grad(u)|

diferencidvel em p. Entdo a curvatura de Gauss-Kronecker de I em p com respeito a

dada por
_ (T™(grad(u)), grad(u))
O gradGo

Demonstragio. Seja E;, i = 1,...,n, um referencial ortonormal para T,M tal que E,

I=1,...,n—1,sdo as diregdes principais de I' em p. Note que, para i # j, temos que

u;j = Hess(u)(E;, Ej)
= (Vr,grad(u), E;)
= (Sp(Ei), Ej)
= (k;Ei, Ej)
= x;(E;, E})
=0,

onde x; é a curvatura principal associada a diregdo principal E;, i=1,...,n — 1.
Logo, as submatrizes principais (n — 1) X (n — 1) da matriz (u;;) sdo matrizes diagonais.
Assim,
Tun = (tnn) = H?:_llull-
Além disso, como E, é ortogonal aI’, e I' é o conjunto de nivel de u, grad(u) é paralelo
a £E,. Portanto, u, = (grad(u), E,) = +|grad(u)|.
Portanto,
(T"(grad(u)), grad(u)) ((7;?)”;']51'1 ugEy)
|grad(u)|"! |grad(u)|™+!
_ (T: ujur(Ei, Ex)
|grad(u)|"*!
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(T3 )ujudiy
~ |grad(u)|m+!
~ (T Jujui

 |grad(u)|+

Mas como, para i # j, temos que u;; = 0 segue-se que (7;]?‘) = (u;)) = 0 para i # j. Logo,

(T"(grad(u)), grad(u)) (7;]”)“]'”1'
|grad(u)|"+1 ~ |grad(u)|"!

(T uju;
|grad(u)|+1

Por outro lado, note que para i # n temos que u; = (grad(u), E;) = £(E,, E;) = 0. Assim,
como T, = H?:_llu”, u, = t|grad(u)| e de (80) temos que

(T¥(grad()), grad(w) _ (T3t
|grad(u)|™+1 |grad(u)|™+!
_ 1 gy | grad(u) >
|grad(u)|"+1
— ; n—1
- |gmd(u)]”—1nl=1
— 71771 ug
=1 grad(u))|
=115 %

= GK,

Uup

onde x;, [ = 1,...,n —1, sdo as curvaturas principais correspondentes as dire¢des

principais E;, I =1,...,n—1. O

Seja (M, g) uma variedade Riemanniana n-dimensional, p € M um ponto arbitrario
de M e U C M uma vizinhanga de p. Considere X € X(U) um campo de vetores em
U. Tome E;, i = 1,...,n um referencial geodésico em p e escreva X = X/ E;. Assim, a

divergéncia do campo de vetores 7*(X) em p é dada por:

n

divy(T*(X)) = Y (Vg T"(X), Ex)(p)

Il
=
|Vl: [
—_

(Ve (TIHXIE;, E) (p)

=~
I
—

1=

(Ed(THX)E; + (T X Vi, Ei, Ex) (p)

P
I
[y
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THX)(P)(Ei(p), Ex(p)) +Z( "X (p)(VE,Ei(p), Ex(p))

X])(p)‘szk

f;

= E(THX))(p) (81)

Definicao 3.51. Seja (M, §) uma variedade Riemanniana, u : M — R uma funcio de classe
Cl1 em M tal que u é duas vezes diferencidvel em p € M. Considere E;, i = 1,...,n um
referencial geodésico para TyM e T" o operador cofator associado a hessiana de u. Definimos a
divergéncia de 7" por

divp(T") = Ei(T;{ ) () Ej(p)- (82)

Lema 3.52. Sejam (M, g) uma variedade Riemanniana n-dimensional, p € M um ponto
arbitrdrio e u : M — R uma fungdo trés vezes diferencidvel em p, grad(u)(p) # 0 e V(u)(p)
ndo degenerada. Entdo

. . [ grad(u) 3 ) o grad(u)
dioy (T (1)) = (enT™) (o) &)

Demonstragio. Considere E;, i = 1,...,n um referencial geodésico em p e note que

grad(u) = quj, j=1,...,n,onde uj, j=1,...n,édado por (75). De (81) temos que,

) . [ grad(u) Uj
dioy (7 (o)) = B () gy ) (54

Por outro lado, pela Defini¢do 3.51 temos que,
. o Srad(u) B ‘ u ‘ ukEk(p)
Ei(Ti{)(p)

W < i(p), Ex(p))
— E (

)P W< i Ex) (p

Ei(T; )(P)W kj

Ei(7; (85)

)(p \gmd(u)\”

Portanto, de (84) e (85) temos que basta provarmos que

1/l l/l
<( 1 grad@ >|)(”) BT eraau
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Note que, pela regra do produto, temos que

u Uj U U ) Uj
((T |gmd<u>|)("’) BT gy * T (El(|grad<u>|>)(”)'

uj
Assim, basta provarmos que T” ( ( )) =0
P . i) ) ¥
De fato,

u i(u) 1

71 (& (Grasn) ) @~ (a5 (oo ) ) @
~ ( Eiw)(p) —”<8md(u) VE, gmd(“))(lﬂ))
=i \Tgradl * |grad(u)|"+2
_ ( Eiwp(p) — (uxEp, VE, M1E1>(P)>
=0 grad@l ~ " [grad(u]
~ ( Ei(upp) <Ek1ulinEl+Ei(ul)El>(P))
— 0\ | grad(u)|n il |grad(u)|m+2
o ( Eiw)p) <Ek(P), MIVE,-EI(P)+Ei(uz)(P)Ez(P)>)
= JgradGuypr ~ ™" |grad(u)|"+2
_ ( Ei(up(p) <Ek(P)r Ei(uz)(P)El(P)>)

i \JgradGo ~ " |grad(u)|™+?
Ei(uj)(p) Ey, E

K (|gmé(u’;‘n pE D
_ ( Ei(up(p) M]MkE (uz)(P)5kz>
1\ grad(u)|" |grad(u)|"+2

, ( Ew)(p) _ w, (uk)(m)
7 \lgradGul" ~ " Igrad@]> )

Por (77) temos que E;(u;)(p) = u;i(p) e E;(ur)(p) = uri(p). Logo,

y uj Ei(u;)(p) ujurE;(ur)(p)
T( (|gmd<u>|))” (\gmd(u \"‘”|gmdu>|n+2)

_ T ( M]z(P) u]ukukz(p) )
grad@]” ~ "[grad()]"

” 1/[]1 u]ukukl
T} (e~ "Traitat)
Mas como (T ) = det(ulj)(u,]) temos que

T”(E(—uj ))() ( L )()
i 51\ [gradw)[ ) ) 7 grad@)[" ~ "[grad@)[*2 ) ¥

_ RYTA ! It _ UjhiUki
= det(uy)uy) (|gmd<u>|" " grad( u>|n+1) ¥)
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det(l/li]') u]-ukékjdet(uij)
" Mgrad@r " grad(u)]2

det(ul-j) uju]-det(uij)
- \grad(u)|* " |grad(u)|"+2

det(uij) det(ui]-)

=n

—n
\grad(u)|®  |grad(u)|"
-0.

[]

Definic¢ao 3.53. Sejam (M, §) uma variedade Riemanniana e p € M um ponto arbitrdrio.

Dizemos que p é um ponto regular de uma fungio u : M — R se u é de classe C' em uma

vizinhanga aberta de p e grad(u)(p) # 0.

Definicdo 3.54. Sejam (M, §) uma variedade Riemanniana e u : M — R uma fungdo. Dizemos

que x € R é um valor regular de u se todo p € u~'(x) é um ponto reqular de u.

Definicao 3.55. Sejam (M, §) uma variedade Riemanniana, u : M — R uma fungio e x € R
um valor regular de u. Dizemos que o conjunto u~'(x) C M é conjunto de nivel regular de

Uu.

Lema 3.56. Sejam (M, §) uma variedade Riemanniana, u : M — R uma fungdo, I C M um
conjunto de nivel regqular de u que limita um dominio (Y e v C M outro conjunto de nivel
reqular de u que limita um dominio D tal que D C Q. Considere que u é de classe C*' em
cl(Q) \ D e grad(u) é o normal para fora ao longo de T e -y com respeito aos seus correspondentes
dominios. Além disso, assuma que |grad(u)| # 0 e V*(u) é nio degenerada em quase todo ponto
p € cl(Q)\ D. Seja du a medida de volume Riemanniano n-dimensional em M e do a medida

de volume Riemanniana (n — 1)-dimensional ou a medida de drea de uma hipersuperficie. Entdo

3 . o Srad(u)
g(r) - g(r)/) - /Q\D <dlU(T )I |gmd(u)|” > d]“l

Demonstragio. Primeiramente, note que, pelo Lema 3.52 temos que

(™ o) =4 (7 (o))

Logo, temos que,

) o Srad(u) 3 ) . grad(u)
oo o7 i ) = oo tion (7 (i) )
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Pelo Teorema da divergéncia, temos que
ey grad(u) > : ( M( qrad(u) ))
s s = d B e A
oo §5 it ) = o (7 (i) o
B . grad(u) ) >d
_/a<Q\D><T (\gmd(u)\” i
_ u M) >
Fo T (i) ) 2

grad(u)

em I e
|grad(u)|

onde v é o normal para fora de d(QQ\ D) = ' U~y. Note que v =
_ grad(u)
|grad(u)|

o o i) = o, AT (vt ) ) 2
= {7 (o) evadar )
[T (i)~ vaday ) 0
- [ (i) a2
AT () a4
| [ (Tt ),

|grad(u)|™+1

_/ <7’”(gmd(u)),gmd(u)>d0
v |grad(u)|™+1 '

em y. Assim,

(T*(grad(u)), grad(u))
|grad(u)|"+1

Mas, pelo Lema 3.50 temos que GK(p) = . Portanto,

e grad(u) _ [ (T*(grad(w)),grad(w)) ,
o ST it ) =

(T*(grad(w), gradu)
L lgadtper ot

_ /r GK(p)do — /7 GK(g)do

=G —G(7).
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Observacao 3.57. Seja (M, g) uma variedade Riemanniana n-dimensional e u : M — R uma
funcdo de classe C'* em M. Entio, pelo Teorema de Rademacher, u é duas vezes diferencidvel em
quase todo ponto de M.

Sejam p € M um ponto no qual u seja duas vezes diferencidvel e E;, i = 1,...,n, um campo
referencial ortogonal suave em uma vizinhanga V de p.

Note que

Ei(det(V?(w))) = E(T,jfun) = T Eiun) = Tifuni, (86)

onde u; = Ej(u,x). Note também que, pela expressio do tensor de Riemann R em coordenadas e

como [E;, E;] = 0, temos

Upik — Urki = Ex(uri) — Ei(upc) = Ex(Ei(uy)) — Ei(Ex(uty)
= Vg VEur — VEVEUr + Vg, EUr
= R(E;, E)(uy) = RE 1y = Ryjpng™ 1t = Rygpy (Em, Ep)tt!
= RiigmOmitt’ = Ryt (87)

Lema 3.58. Sejam (M, §) uma variedade Riemanniana, u : M — R uma fungdo, I C M um

conjunto de nivel reqular de u que limita um dominio Q. Considere que u é de classe C*' em Q.

Além disso, assuma que |grad(u)| # 0 e V?(u) é nio degenerada em quase todo ponto p € Q).

Seja p € Q) um ponto no qual u é trés vezes diferencidvel. Considere E; um referencial ortogonal

em p € () entio

(dio(T"), grad(u)) = R(T”(gmd(gtf(g 2(5))) E;, grad(u))

_ R(T*(grad(u)), E;, T*(E;), grad(u))
B det(V2(u1)) '

Demonstragdo. Pela Defini¢do 3.51 e por (75) temos que

(div(T"), grad(u)) = (Ei(T;j)Ej, ukEx) = Ei(T;j Jux(E;, Ex) = Ei(T;j")u;. (88)
De (78) temos que
Ei(T3}') = Ei(uldet(V(u)) = Ei(u'l)det(V*(u)) + u Ey(det(V2(w))). (89)
Agora, note que u"uu = 5u = u'l. Logo, temos que
Ei(u") = Eiu"upat) = Ei(uunad = —u" B ugl = —u"Ei(uiu’. (90)

Reindexando (9o) para i — k obtemos

Eiu') = —ui E(ui)u'l = —u"Ej(up )ul = —u"ubEj(up) = —uub . (91)
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Substituindo (91) e (86) em (89) e usando (78), obtemos

Ei(T¥) = Ei(u)det(V?(u)) + u'l Ey(det(V2(u)))
= — 1", det(V2 (1)) + u'l Uy
= uldet(V>w))u" 1, — w1 det (VA (1))

= det(V*(u) (' u up; — u"uN ). (92)
Reindexando (92) parai — k e [ — i e usando (87) obtemos

Ei(Tyf') = det(V> @) ('Tu s — 1" ub )
= det(V? () W u e — uTuM ;)
= det(V? () u" uM (i — vpg;)

= det(V2(u))u"" uM Ryjryu. (93)
Substituindo (93) em (88) obtemos

(div(T"), grad(u)) = E(T;)u,
= det(V2(u))u'" ub Ry uyu
= det(V2(u))u" U R(Ey, E;, Er, w Epu;
= det(V2(u))R(u¥ Exu;, E;, u'" Ey, u Ey)

= det(V*(u))R(w* Eguj, E;, u" Ey, i Ey) (94)
(THE:  TU(E) " (TjouiEx

Por (78) e (79) temos que u'"E, = u"*E

T"(grad(u))
det(V2(u))

det(V2@w))  det(V2w)) © T T der(VRw)

. Portanto, usando isso em (94) obtemos

(div(T"), grad(u)) = det(V*(u))R(w*Eu;, E;, u™E,, u;Ey)

_ 2 T"(grad(u)) .  T"(E)

= det(V (u))R( det(V2(u)) det(vz(u)),gmd(u))
_ R(T*(grad(u)), E;, T"(E;), grad(u)) 95)
- det(V2 (1)) ' 95

Por fim, multiplicando (94) por uty;=Te depois reindexando por I — i obtemos

(div(T"), grad(u)) = det(V?(u))R(w*Exuj, E;, u" Ey, u,Ey)
= det(V2(u))u' uy;R(w Eguj, Ej, u” Er, 1, Ep)
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= det(V2(u))R(W* Exu;, uE;, wyiu" Ey, w Ey)
= det(V?(u))R(W*Eguj, u"E;, 61,Er, w1 Ey)

= det(V2(u))R(W* Egu;, u"'E;, Ey, u) Ey)
T"(grad(u))  T"(Ep)
det(V2(u)) * det(V2(u))’
~ ) T"(grad(u)) T"(E))

= det(V2()R ( Aet(V2(w)) | det(V2(w)’
_ R(T*(grad(w), T"(E), E;, grad(w) 96)
B det(V2(u)) ?

= det(V?(u))R ( E;, gmd(u))

Ei,gmd(u))

Portanto, por (95) e (96) temos o requerido. O

Corolario 3.59. Sejam (M, §) uma variedade Riemanniana, u : M — R uma funcio, I C M
um conjunto de nivel regular de u que limita um dominio () e v C M outro conjunto de nivel
reqular de u que limita um dominio D tal que D C Q. Considere que u é de classe C*' em
cl(Q) \ D e grad(u) é o normal para fora ao longo de T e -y com respeito aos seus correspondentes
dominios. Além disso, assuma que |grad(u)| # 0 e V*(u) é nio degenerada em quase todo
ponto p € cl(Q) \ D. Seja du a medida de volume Riemanniano n-dimensional em M e do a
medida de volume Riemanniana (n — 1)-dimensional ou a medida de drea de uma hipersuperficie.

Considere E; um referencial ortogonal em p € ) entdo

R(T*"(grad(u)), T*(E;), E;, grad(u))

I — = / du.
g -9 O\D |grad(u)|"det(V*(u)) a
Demonstragio. A prova é imediatamente dos Lemas 3.56 e 3.58. O

Lema 3.60. Seja A uma matriz simétrica n X n, com submatriz principal (n — 1) x (n — 1)
diagonal, dada por

eseja A = (a;j) a matriz de cofatores de A. Entio
1. Ajy = —aiHI#ibl; para 1< n.
2. ajj = ajailly by paraij<mnei#j.

3. 4j; = aHl#ibl — Zk-T/i a%Hl-f’k,ibl/ para 1 < n.
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4. det(A) = aHlbl — Zk Q%Hl#kbl.

5. Para by, ..., b,_1 fixados, a tendendo para infinito e |a;| < C (independente de a), os
autovalores de A satisfazem Ay = by +0(1) parax < ne A, =a+ O(1), onde o(1) e O(1)

dependem uniformemente somente de by, ..., b,_1 e C. Em particular,

det(A) = aH,-bi + 0(1)

Demonstragio. (1): Primeiramente, note que para calcular o cofator do elemento a;,,

i < n, temos que calcular o determinante da seguinte matriz subjacente

bl 0 0 a1
0 bi 0 aj;
0 0 by—1 an-1
ar ... 4a; ... Ay a

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa
expansdo sobre a i-ésima coluna da matriz subjacente mas, por construgado, temos que
todos os elementos dessa coluna sdo nulos a menos do elemento a,; = 4;. Além disso, a

matriz subjacente ao clculo desse determinante é diagonal.

171 0 0 ai
0 bi o 0 a;
O ... 0 ... bn—l ay—1
ar ... 4 ... 4u—1 a

Portanto,

T = (1), (—1)" T4y = (— 12D 0 114 = —a T 4b;.
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(2): Primeiramente, note que para calcular o cofator do elemento a;j, i, j < n i # j, temos

que calcular o determinante da seguinte matriz subjacente

by 0 0 0 a
0 b; 0 0 a
0 0 ... b 0 aj
0 0 0 b a
ap ... 4 ... 4 ... a1 4

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa
expansdo sobre a i-ésima coluna da matriz subjacente mas, por construcdo, temos que
todos os elementos dessa coluna sdo nulos a menos do elemento a,; = a;. Além disso, a

matriz subjacente ao cdlculo desse determinante é dada por

bl 0 0 0 ay
0 b; 0 0 a
0 0 ... b 0 a
O ... 0 ... 0 ... bn—l An-1
ar ... a4 ... El]' e | a

Logo, trocando a j-ésima linha com a (j + 1)-ésima linha. Depois trocando a (j + 1)-
ésima linha com a (j + 2)-ésima linha e, assim, sucessivamente até a (n — 1)-ésima linha

obtemos que fizemos n — 1 — j trocas. Portanto,

@i = (=) (—1)" (=1 eIy by = (1) Daa I b = aia T4 b
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(3): Primeiramente, note que para calcular o cofator do elemento 4;;, i < n, temos que

calcular o determinante da seguinte matriz subjacente

b1 . 0 Ll 0 ai
0 bi 0 aj;
0O ... 0 ... bn,1 Ay—1
ar ... a4 ... Ay a

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa

expansdo sobre a (n — 1)-ésima coluna da matriz subjacente. Donde obtemos que

T = (=1 Tl by + Y agg,.
k#i
Usando o item (1) do Lema 3.60 temos que ay, = —a;l1;4b;. Portanto,

T = (= 1" AT + Y gy,

ki
= (— 12" Vall b + Y ax (—ad T 4b))
ki
= all;4b; — Y aiT T 4b;.
ki

(4): Para calcularmos o determinante da matriz A vamos usar o Teorema de Laplace

usando n-ésima coluna para expansdo. Assim, obtemos que

det(A) = (—=1)""all;b; + Zakﬁ]m.
k

Usando o item (1) do Lema 3.60 temos que ay, = —ail1;4b;. Portanto,

det(A) = (—1)""alL;b; + Zakﬁ]m
k
= (—1)2”aHlbl + Zﬂk (—akHZ#kbl)
k
= ﬂHlbl — Zaiﬂl#kbl.
k
(5): Primeiramente note que os autovalores A de A satisfazem que
bl —A O ai

det h : =0. (97)
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1
Multiplicando por - ambos os lados de (97) obtemos que:

ay
bl A O ;
det ' a :_ =0.
O bn,1 _ A Yla 1
A
a1 e Au—1 1— E

Como o determinante é uma funcdo continua, podemos fazer a — oo e obtemos:

bl —A O 0

det B "l =0.
O bn—l —A 0
a1 .. ay—1 1

Donde temos, pelo item (4) do Lema 3.60, que 1—[;’;11(171 — A) = 0. Assim, os niumeros
bi,...,b,_1 sdo raizes simples e, pela dependéncia continua das raizes com relagdo aos
parametros do polindmio, temos que Ay = b, +0(1) para a < n.

Para achar o dltimo autovalor, fazemos a mudanga A = ay em (97) e obtemos

b1 —au O aq
det h | =o0. (98)
9) by1—ap a1
a1 .. An—1 a—au

1
Multiplicando por o ambos os lados de (98) obtemos que:

bl ai
PR O a
det - : =0.
bnfl Ap—1
O a —H a
n fAn-1 1—
p e p 2

det h : =0.
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Donde temos que (—#)"~'(1 — ) = 0 e, portanto, u = 1 é uma raiz simples. Portanto, 1

é uma raiz simples e, pela dependéncia continua das raizes com relagdo aos parametros

do polindmio, temos que =1+ O <%> Ou ainda, A,, = a+ O(1). O

Definicao 3.61. Sejam (M, g) uma variedade Riemanniana e u : M — R uma fungdo de classe

Cl. Considere p € M um ponto regular de u. Dizemos que Ey, ..., E, € T,M é o referencial

_—IEZZZEZ;ZZ;’ e E ..., E,_1 sdo as diregbes principais do

conjunto de nivel reqular u='(u(p)) em p com respeito a —E,,.

principal de u em p se E,; =

Teorema 3.62 (Férmula de comparagao, primeira versado). Sejam (M, §) uma variedade
Riemanniana, u : M — R uma fungdo, I C M um conjunto de nivel regular de u que limita
um dominio () e y C M outro conjunto de nivel reqular de u que limita um dominio D tal
que D C Q. Suponha que grad(u) é o normal para fora ao longo de I' e -y com respeito aos
seus respectivos dominios. Além disso, suponha que u é de classe C*' em cl(Q)) \ D e, em quase
todo ponto de cl(Q) \ D, grad(u) # 0 e V?(e") é ndo degenerada. Seja du a medida de volume
Riemanniano n-dimensional em M. Entio,
GK GK  upy
T)— =—/R—d+/R—#,
g(M) —G() O\D rnrm H O\D rkrn Koy | grad(u)| I
onde todas as quantidades sio calculadas com respeito ao referencial principal deuw e k < n — 1.

th _
Demonstragio. Considere w(p) = (¢ o u)(p), onde ¢(t) = %, para h > 0. Note que I'

e 7 serdo conjuntos de niveis regulares de w.
De fato, como I' e 7 sdo conjuntos de niveis regulares de u temos que existem

t1,t2 € R tais que

F={peM:ulp)=ti} ={p € M: pu(p)) = p(t1)} = {p € M: w(p) = p(t1)}

vy={peM:u(p)=t2} ={p € M: ¢(u(p)) = ¢(t2)} = {p € M:w(p) = P(t2)}.

Além disso, grad(w) # 0. Primeiro calculemos o gradiente de w. Parap € Mev € T,M

arbitrdrios temos que

(grad(w)(p),v) = (grad(¢p o u)(p), v)
= dp(¢ o u)(v)
= du(p)‘P(dpu(v))
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= ¢'(u(p))(dpu(v))
= ¢'(u(p)){grad(u)(p), v)
= (¢'(u(p))grad(u)(p), v). (99)

Portanto, grad(w) = ¢'(u)grad(u), mas como ¢'(u) = e e grad(u) # 0, pois I e 7y sdo
conjuntos de niveis regulares, temos que grad(w) # 0.
Além disso, V?(w) é ndo degenerada em quase todo ponto. De fato, para X € X(M) e

usando (99) temos que

VA (w)(X) = Vxgrad(w)
= Vx(¢'(u)grad(u))
= ¢/ () V xgrad(u) + X (¢! (u))grad(u)
= ¢' (W) V2 ()(X) + ¢ (u) X (u)grad(u)
= ¢' () V*u)(X) + h¢' (u) X (u)grad(u)
= ¢'(u) (Vz(u)(X) + hgrad(u)(grad(u), X}) . (100)
Logo, como ¢'(u) = e, h >0, grad(u) #0 e V2(u) e ndo degenerada em quase todo

ponto, temos que V2(w) é ndo degenerada em quase todo ponto.

Assim, do Corolario 3.59 para w, temos que

R

o\D |grad(w)|"det(V2(w)) (101)

Seja p um ponto do conjunto de nivel {p € M : w(p) = ¢(t)} e Ex, « = 1,...,n, 0
referencial principal de w em p. Note que w;(p) =0, i < n, e |w,| = |grad(w)|.

De fato, como E,, « = 1,...,n, é o referencial principal de w em p, temos que
P grad()(p)
|grad(w)(p)|

e, portanto,
wy, = (grad(w), E,) = (—|grad(w)|En, En) = —|grad(w)|(E,, En) = —|grad(w)]|.
Donde segue-se que |wy| = |grad(w)|. Por outro lado, para i < 1, temos que
w; = (grad(w), E;) = (~|grad(w)|Ex, Ei) = —|grad(w)] (En, ;) = 0.

Por (94) e (96) temos que o integrando do lado direito de (101) é dado por

R(T™(grad(w)), E;, T“(E;), grad(w)) _ det(V*(w))ww" Ripwjw;
|grad(w)|"det(V2(w)) - |grad(w)|"
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_ det(vz (w))wknwir RiirnWnWn

) |grad(w)|"

_ det(VA(@) w0 Ry,
|grad(w)|"*—2

(102)

Note que (w;;) = ¢'(u)(a;;), onde a;j = u;j + huu;. De fato, por (100), temos que
= Hess(w)(E;, Ej)
= (VX (w)(Ey), E;)
= (¢') (V2W)(E) + hgrad(u){grad(u), Ey) ) , E;)
= ¢/ () ((V2)(ED, E; ) + (hgrad(u)(grad(w), E;), E;) )
= ¢/ (u) (Hess(u)(E;, Ej) + h(grad(u), E;) (grad(u), E;))
= @' (u)(ujj + huju;).

Note também que u;(p) =0, < n, e uy, = —grad(u) analogamente a w;(p) =0,i < n, e

|wy| = |grad(w)|. Além disso, por (80) temos que uy, = |grad(u)|xy. Disto segue que

]gmd(u)];q O Uiy
(ajj) = A :
O |grad(u)|1<n,1 Umn—1)n
Uiy .. Uin—1)n Uy + h|grad(u)|?

Seja (4;;) a matriz de cofatores de (a;). Note que (w;;) = det(V?(w))w' = cp’(u)”’l(ﬁij).
De fato, como para uma matriz quadrada invertivel A temos que CT = det(A)A~!,
onde CT é a transposta da matriz de cofatores de A, temos que (wij)T = det(V2(w))w';
que implica em (w;;) = det(V?(w))w'l. Por outro lado, temos que (wij) = ¢’ (u)(ai) e

multiplicando ambos o lados a direita por (w'/) obtemos (p’ (u)(aij)(wij) = Id, isto é,

(w') = 4(;(1])) Portanto, (w;;) = det(V2(w))(w') = det(Vz(w))qg/( )) Por fim, como (w;;) =
¢’ (u)(ajj), temos que det(V*(w)) = det((wij)) = (¢/ (u))"det((a;;)). Donde concluimos que
@) = der (V) 5 = (u))“det((aq));),( )~ oy,
Por (99) temos que |grad(w)| = ¢'(u)|grad(u)|. Assim, pelo exposto acima e por (102)
temos que
R(T“(grad(w)), E;, TY(E;), grad(w)) _ det(V*(w))w " w' Ry,
[grad(w)]"det(V2(w)) ST Jgrad@)]

_ (det(V2(@))a"a" Ry
¢/ ()¢ ()] grad(w)| "2
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B (det(V*(w))ag, @i Ryirn

@' (w)det(ag,) ¢’ (u)det(a;)|grad(w)|"—2

_ det(V2@)) (@' ()" (¢ ()" Ty lis Ry
(¢'(w))"det(ar,) (@' (u)) det(a;,)|grad(w)|"—2

 (det(VA(w))¢' ()" ¢ ()" By i R

— det(V2(w))det(V2(w))|grad(w)|n—2

_ ((‘Pl(u))znizaknﬁirRkirn
det(V2(w))|grad(w)|"—2

(((P/(u))zn_zaknﬁirRkirn

" (@' (w) det(a;)) (¢ ()" 2| grad () ["=2

Anir Riirn
= _ 10
(o grad ]2 e
Pelo Lema 3.60 temos, para h — oo, que
( GK
—uin?]gmd(uﬂ”_z, parai <nej=mn;
K
~ Uinllyj |grad(u)|"—3, parai#jei,j<m;

KiK]'

(tnn + h|grad(u)\2)%|grad(u)]”_2 +0(), parai=jei,j<mn;
i

GK|grad(u)|"1, parai=j=n.
Por outro lado, também pelo Lema 3.60, temos que
det((a;j)) = (unn + h|grad(u)|?)GK|grad(u)|" ! + O(1).

Observe que para i # j ou i = j = n temos que 4;; sdo independentes de h. Portanto, de
(103), temos que
R(Tw(gmd(w)), E;, Tw(Ei)/ gmd(w)) _ Anir Riirn

|grad(w)|*det(V*(w)) det((aij))|grad(u)|"—>

_ Akn@rr Rirrn 1
~ det((ayy))| grad(u)|"2 +O (h)

(_ukni_f|grad(u)|n2) ( det((aij)) >errn

Kr|grad(u)]
B det((a;;))| grad(u)|"=2
. det((aij))
(GK|grad(u)|"~1) (W) Rurrn (1
" det((a;j))|grad(u)["—2 " (E)

uknGKerrn n GKRnrrn " O (1)

T lgradwlke T x h
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= —Rynrn + Rokrn —— E

GK GK  uy ( 1 )
R + ,
Ky KKy |grad(u)|
onde k < n — 1. Entdo pela férmula de coarea aplicada ao lado direito de (101) nos d4

que

/ R(T*(grad(w)), E;, T*(E;), grad(w)) ,
O\D |grad(w)|"det(V>(w))

[ (ir, GKig, CK mi (1

5 GK GK  u,y 1 do
R +R ko)) —=—d
[ sy (TR Rt et 0 (5) ) fradcan™

ondes; =¢(t;),i=1,2,e D={pe M:w(p) <s1}eQ={pe M:w(p) <sy}. Fazendo
a mudangca de varidvel s = ¢(t) e fazendo h — co temos que

/ R(T™(grad(w)), E;, T(E)), gmd(w))d
O\D |grad(w)|*det(V?(w))

7y (R Ran 0 (1))
(peM:w(p)=s} T e ke ek | grad(u)| gmd(u)| h) ) |grad(w)| gmd(w)|

$(t2)
/(t12 /{peM:w(p)=¢(t)} (_Rmm% +Rrkm127[<<k |8TZZIE”)| +O (% ) |grad(w)| ()
t
= / ? /{peM u(p) t} <—anrnGK—f< + Rrkrn KC;IC(k \ngZZIEu <%>> 4)’(u)|gmd(u)\ ¢/(t)dt
t
1, e (R * R i +© (7)) ramgraaan? 0%
t2 GK GK u,
S (s B, i (3))
t

2 GK GK u
= / / <_anrn_ + Rrkrn nk ) dt
t J{peMu(p)=t} Ky Kkrky |grad(u)| ) | gmd(u)|

_/t2/ R GK  do /fz/ GK do
b HpeMupty |grad(u)| {peM:u(p)=t} Rrken KKy |grad(u)| |grad( u)|

Usando novamente a férmula de coarea obtemos que

/ R(T*(grad(w)), E;, T*(E;), grad(w)) q
O\D |grad(w)|*det(V2(w))

_/t2/ R GK do /t2/ GK do
{peMup) no"" |gmd(u)| {peMuu(p)=t} R |8md(u)||8md(u)|

GK Unk
/ Rynrn _d‘u + /Q\D Ren Kr K Wd;u

Ou ainda,

GK GK Uk
F - = _/ anrn_d / R?’ 7’7’1_#
dO-90=" oo o T Jawp Ty | grad(u)]
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onde todas as quantidades sao calculadas com respeito ao referencial principal de u e
k<n-1. O

A Definicdo 3.63 faz referéncia ao artigo [GChW76, Definigdo 1, p. 211].

Definigdo 3.63. Sejam (M, ) uma variedade Riemanniana e u : M — R uma fungdo. Dizemos
que u é estritamente convexa no sentido de Greene-Wu se para todos p € M e toda fungio
¢ de classe C* definida em uma vizinhanga de p existe um € > 0 tal que u — e é convexa em

uma vizinhanga de p.

Definicao 3.64. Sejam (M, §) uma variedade Riemanniana, u : M — R uma fungidoe Q) C M
um dominio em M. Considere q € Q) e p(p) = d(p, q). Definimos

_ € 5
w(p) = u(p) + 50°(p)-
Note que se u é uma func¢do convexa entdo u°(p) serd estritamente convexa no sentido
— € P
de Greene-Wu, pois u*(p) — Epz(p) = u(p) é convexa.
Na Definicdo 3.65 vamos generalizar para variedades Riemannianas o conceito de

suavizadores construido para o Lema 2.99.

Definicao 3.65. Sejam (M, g) uma variedade Riemanniana, u : M — R uma fungio de M
e ¢ : R" — R uma fungdo suporte em [—1,1] de classe C* tal que ¢ é constante em uma

vizinhanga da origem e satisfaz [, ¢(|x|)dx = 1. Definimos
_1 ol
wordw =55 [0 () wensonin, (104)
onde dyy é a medida em TyM ~ R" induzida pela medida Riemanniana dy de M. Além disso,

definimos também

Proposicao 3.66. Sejam (M, g) uma variedade Riemanniana, u : M — R uma fungio de
M, e > 0e X C M um subconjunto compacto de M. Entdo existe A > 0 tal que u§ ¢é de
classe C® em uma vizinhanga aberta U de X e u§, — u® uniformemente em U, quando A — 0.
Além disso, se u é de classe C* em uma vizinhanga aberta U de X entdo ﬁi — ut em U com
respeito a topologia CX. Por fim, se u é convexa entio i1, serd estritamente convexa no sentido de

Greene-Wu com Hessiana positiva definida em todo ponto.

Demonstragio. Note que a primeira parte segue do Lema 2.99. Note que se u é convexa
entdo entdo u°(p) é estritamente convexa no sentido de Greene-Wu e por [GhW76,
Teorema 2, p. 214 - 220 e Lema 3.3, p. 215 - 217] temos que % serd estritamente convexa

no sentido de Greene-Wu com Hessiana positiva definida em todo ponto. O
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Definicao 3.67. Sejam (M, §) uma variedade Riemanniana, A C M um subconjunto de M
e Ug(A) a vizinhanga tubular de raio 0 de A. Definimos uma funcao de corte para Uy(A)
como uma fungdo continua 1 > 0 em M a qual depende somente da distancia 6(-) = d o(+), é ndo

decrescente em termos de 9, e satisfaz

0 sed(p) <6,
n(p) = { (105)
1 sed(p) > 20.

Pelo Lema 3.3 temos que ¢ é Lipschitz. Assim, podemos escolher 77 de modo a ser

Lipschitz também e, consequentemente, diferencidvel em quase todo ponto.

Em todo ponto de diferenciabilidade de 77 temos que

w [ grad(u) (T3 )uiEi, ncEx)
<T (|grud(u)|”) ,grad(;y)> | grad(u)|

(T
= [gradqopr F Bl
(Tij Yujmi
- \grad(u)|" ik
~ (T )mivj
~ |grad(u)|"
_ (73;)771'1’[11
 |grad(u)|"
_ (Tymi(—|grad(u)|)
B \grad(u)|"
_ Ui
|grad(u)|"—1
_ T (Ta)nn
|grad(u)["~1  |grad(u)|"1’

onde k < n — 1. Pelo Lema 3.60 aplicado as matrizes (7)) e (7,);) obtemos que

L gradQu) T (T
<T (|gmd<u>|")’gmd"’)>‘ grad)]" T Jgradqu)]" 1

_ _ “eallio |grad(w)|""2ne  GK|grad(u)|" Vi
|grad(u)|"! |grad(u)|*~!

Uik %_
| grad(u)| xx G-
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Além disso, temos que para um campo de vetores Y € X(M) arbitrdrio em M, uma
variedade Riemanniana,

n

div(nY) = 2<VEi(77Y)/ E;)

) (Ei(Y +3nVE(Y), Ei)

1]
=T
—_

-
I
—

1=

((Eim)Y, Ej) + (nVE(Y), E}))

-~
Il
—

M:

n
(Y, Ei(n)Ei) + ) _(nVE(Y), E
i=1

-
Il
—

M:

Y (Y, (grad(y), Ei) Ei) + UZ(VE,-(Y),Ei>
i1

-
Il
—_

1=

) (Y, ki) + +1) (VE(Y), Ej)
iz

Y, grad(n)) + ndiv(Y).

-
Il
—_

Logo, obtemos que
oo i) () o)
o (22 ) )
- / (M% - nnGK> dyu+
" / ndiv (T” (%)) dy (106)

Para o nosso préximo Teorema 3.69 note que nossa nova férmula de comparagdo podera

ser aplicada para fung¢des convexas, onde as principais curvaturas podem ser nulas.

Assim, vamos definir algumas convengdes na Defini¢do 3.68.

Definic¢ao 3.68. Sejam (M, §) uma variedade Riemanniana e I uma hipersuperficie mergulhada

de M. Considere x;, i =1,...n — 1, as curvaturas principais de I'. Definimos

GK GK
huk o S
X i#rKi e KKy

= Iig ;-

Além disso, definimos

Gy (I) = /r nGKdo.
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Teorema 3.69 (Formula de comparacdo, versdo geral). Sejam (M, g) uma variedade Rie-
manniana, u : M — R uma fungio, I C M um conjunto de nivel reqular de u que limita um
dominio Q) e vy C M outro conjunto de nivel regular de u que limita um dominio D tal que
D C Q. Suponha que grad(u) é o normal para fora ao longo de I' e -y com respeito aos seus
respectivos dominios. Além disso, suponha que u é de classe C''!' em (Q\ D) \ A, para algum
conjunto fechado A C Q\ D, e u ou é convexa ou V?e" é nio degenerada em quase todo ponto
de (O\ D)\ A. Seja du a medida de volume Riemanniano n-dimensional em M. Entdo, para

0 > 0 e y uma fungdo corte para Ug(A),

_ GK Unk
Gy(T) = Gy(y) = /Q\D <’7kK—kW - UnGK) dp+

GK GK Uk
i /Q\D 1 ( Renrn o Retrn KK |grad(u)|) s

onde todas as quantidades sio calculadas com respeito ao referencial principal deuw e k < n — 1.

Demonstragio. Considere u : M — R a func¢do de M, ¢ > 0 arbitrario e cI/(QQ) \ D um
subconjunto compacto de M. Pela Proposigdo 3.66 temos que existe A > 0 tal que uf é
de classe C* em uma vizinhanga aberta U de cI(Q)) \ D.

Como I' e ¥ sdo conjuntos de niveis de u que limitam os dominios () e D, respec-
tivamente, tais que D C Q. Entdo temos que I'={p e M1 u(p) =}, y={p € M :
ulp)=t}, Q={peM:ulp)<titeD={pe M:u(p) <ty}, comt, < t;. Considere
I={peM:B(p) =t} vi={peM: () =h), O ={pcM: (P <h}e
Di={p e M:uj(p) < b}

Agora, por (106) para i e calculado sobre Q)f \ Df obtemos:

) . grad(us) )) ( GK  (u5)uk )
div | nT"r (—~ d =/ — 2 — —1,GK | du+
/ﬂa\Dg (’7 grad@®)* ) ) T Jagog \™ e [grad@)] ¥

. e g?’ﬂd(ﬁi) ))
d LA i d
' /o;\D; . (T ' < gradGi ) ) 107

Vamos calcular primeiro o lado esquerdo de (107). Pelo Teorema da divergéncia, temos

que

) 5 [ grad(uf) )) < - ( grad(us) > >
div ( nT" (—N d :/ T | =—2— ) ,v)do
/ﬂi\Di <17 |grad(us)[" . 3(Q5\DY) 1 |grad(iis)|"

~¢ ~€
L () N,
TS U |grad (i) |
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onde v é o normal para fora de 9(Q)} \ DY) = I'; U~$. Note que v =

 grad(u})
|grad(iiy)|

grad(uf) )) < ( grad(uf) ) >
div T(— d=/ T A ) ) do
/Oi\D€ (17 |grad(iif)|" : FSUn 1 |grad(us)|"
d A
< ( gra (u/\)n> , qra (Z?) >dc7+
|grad(us)| |grad (i)
< ( grad(uf) ) B grad(uf) >da
|grud(uA)]” " |grad(iry)|
< ( grad(u§ ) grad(u§ )>
do—
|gmd(uA)|” " |grad(u)|
grad(uA) > grad(ﬁi) >
— T ( — , — do
/7; 1 < grad(@)[" ) " [grad ()|
Procedendo analogamente & demonstracdo do Lema 3.56 obtemos que
) 5 [ grad(uf) )) < — ( grad(uf) ) gmd(ﬁj)>
div [ nT"A <—~ d :/ THa — , — do—
/Q;\Df‘?A <17 |grad(ii)|" H re T \grad(us)|" ) " |grad(u)|
e [ grad(uf) ) grad(uf) >
— THA ( — , — do
[ri 1 < |grad(us)|" ) * |grad(uf)|

= / nGK(p)do — | nDK(q)do
T3 73

em 7. Assim,

= Gy(I3) — Gy(rh). (108)

Agora, vamos calcular a segunda integral do lado direito de (107). Pelo Lema 3.52 temos

que

, o ( grad(i) >> ( < e grad(i) >>
d A ) )y = d o= ) ) 4
/QEA\Di e (T ' (\ grad@)[" ) ) " /Q;\D; T\ |grad(i})|"

Agora, pelo Lema 3.58, temos que

i, (_8radlny) _ (T 8TA0)
/QEA\DE e (T (|gmd(uA)!”>>dy _/Q;\Din(<dw(T ) |gmd(uA)|”>> i

_ / R(T " (grad(it})), Ei, T"(E;), grad(ir}))
\ D% |grad(uf)|"det(V2(iL,))

Procedendo analogamente a demonstra¢do do Teorema 3.62 obtemos que

grad(i5) )> B R(T ™\ (grad(i1y,)), E;, T"A(E;), grad(ir5))
/Q;\Ds o (T (|gmd(uA)|” = / e\ ( \grad(iis)["det(V2(iE))

111
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B GK GK (i)
- /Qi\Di n (_anrnK_r + RrkarKk |gmd(ﬁf\)| ’

(109)

onde todas as quantidades sdo calculadas com respeito ao referencial principal de uf e

k < n —1. Portanto, usando os resultados de (108) e (109) em (107) temos que

GK (i)
G,(T)— G 8:/ ( Ak —nGK)d+
71( )L) U(r)//\) Qi\Di 77k Kk |g7’ﬂd(7/lf\)’ 17 ]”l
GK GK  (t5)nk )
—R nrn=___ Rr ™ ~ dy.
+/Q;\D;17< 'S R KK |grad(us))| K (110)

Agora, fazendo A — 0 obtemos, pela Proposi¢ao 3.66 que u§ — u° uniformemente em

U. Além disso, como u é de classe C"' em uma vizinhanca aberta U de (Q\ D) \ A

entdo 1§ — u° em U com respeito a topologia C11. Além disso, quando fazemos ¢ — 0
€

obtemos que u® — u, pois u° = u + Epz. Disso, segue-se que I'{, — T, 7§ — 7, Qf — Q)

e D§ — D quando A — 0 e ¢ — 0. Portanto, de (110), temos que

GK Unk
T — = / i S—e QW
g’]( ) gﬂ(r)/) O\D (ﬂk Ki ’grad(u)’ Ui ) z’l+
GK GK Uk
" /Q\D 1 ( RW"K_r + Retern KK |grad(u)|) s

onde todas as quantidades sdo calculadas com respeito ao referencial principal de u e
k<n-1. O
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3.4 APLICACOES PARA A FORMULA DE COMPARA-
CAO

Nesta secdo vamos estabelecer algumas aplica¢des para a férmula de comparacdo obtida
no Teorema 3.69, como para variedades com curvatura seccional constante, tomando-
se conjuntos de niveis regulares para a fungdo distancia com sinal, ou tomando-se a

hipersuperficie como uma esfera geodésica. Comecemos com algumas definicdes.

Definicao 3.70. Sejam (M, §) uma variedade Riemanniana, u : M — R uma fungio de
Mep € M um ponto de M onde u é duas vezes diferencidvel. Considere o conjunto de
nivel reqular T = {g € M : u(q) = u(p)} e k1, ...,%,_1 as curvaturas principais de I'. Seja

K =(x1,...,%,—1). Definimos a r-ésima curvatura média generalizada de I por

or(K) = 0r(K1, - -+, K1),
onde oy denota as fungdes simétricas elementares, isto é, 04(x1, ..., Xg) = Z Xij o Xi,
i< <iy
Observacao 3.71. Nas condigdes da Definicio 3.70 temos que 0,,_1(x) = GKe 01(xk) = (n —1)H,
onde H é a curvatura média de T.

n/2
Note que vol (5""1) = nwy, onde wy, = vol (B") = ¢ Géa fungdo gama.

(3

Lema 3.72. Seja (M, §) uma variedade Riemanniana n-dimensional e B, uma bola geodésica de

raio 1, suficientemente pequeno, em M. Entdo
|G (0By) — nwy| < Cr?,
para alguma constante C independente de r.

Demonstragio. Para 0B,, uma esfera geodésica, considere xi,...,k,_1 as curvaturas

principais de dB,. Por [CV81, Teorema 3.1, p. 36] temos, em particular, que
_ /1 1 )
GK = leclzllxi(P) = H]rcl:ll (;51'1' + O(}’)) = prri +O@" 1)’

onde GK é a curvatura de Gauss-Kronecker de dB,. Além disso, temos por [CV81,

Teorema 3.5, p. 37] que para r suficientemente pequeno GK > 0. Portanto

1
0<GK<L T (111)

113
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Além disso, por [Gray4, Teorema 3.1, p. 337 - 338] temos que

00I(@B) = &yt — Ric@B) 24" + ("),

1\" -1
onde &, = 3G <—) G <E> , G é a fungdo gama e Ric(dB,) é a curvatura de Ricci de

2 2
2m"/2 nm"/2
0B,. Primeiramente, note que, a;, = = 7 = nwy. Portanto, temos que
G (—) G (- + 1)
2 2
v0l(9B,) — nw,r" 1 < Cr"*l (112)

onde C = —Ric(dBy)

obtemos que

nw .
6nn é uma constante independente de r. Usando (111) e (112)

G(0B,) — nwy, = 5 GKdo — nw,,
B,

1
< T do — nwy,
9B, 1"~

1
< ——vol(dB,) — nwy,
yn—1

1 _
< ﬁ(Cr”+1 + nw, N — nw,
-

< Cr*+ nw, — Nwy,

S Crz. (113)
Por outro lado,
G(9B,) — nwy = GKdo — nwy,
0B,
> —Nnwy
. 1’”+1
= 1— -1
) 1 rn—l
z_crl_rn_l_cl_rn_l.
| , N =1
fssun, quando r é suficientemente pequeno temos que 11 —1le 11 —0
0go,
GOBy) —nwn > —Cris—— = Co——
> —Cr2. (114)



3.4 APLICAGOES PARA A FORMULA DE COMPARAGAO

Por (113) e (114) temos que
|G (9B,) — nw,| < Cr?.

O

Faremos primeiramente a aplicagdo para o caso de uma variedade Riemanniana com

curvatura seccional constante.

Corolario 3.73. Sejam (M, §) uma variedade Riemanniana de curvatura seccional constante
igual a Ko, u : M — R uma fungio, I C M um conjunto de nivel reqular de u que limita um
dominio Q2 e oy C M outro conjunto de nivel regular de u que limita um dominio D tal que
D C Q. Suponha que grad(u) é o normal para fora ao longo de I' e -y com respeito aos seus
respectivos dominios. Além disso, suponha que u é de classe C1' em Q\ D e u ou é convexa ou
V2e" é ndo degenerada em quase todo ponto de O\ D. Seja du a medida de volume Riemanniano

n-dimensional em M. Entdo,
G0~ g1 =Ko [ aualiip. (115)
O\D

Em particular, se ' e 7y sido convexos e Ko < 0 entdo G(I') > G(y). Além disso, se ' é convexo e
Ko < 0 entdo
G(D) = nw, — Ko | Gu-a()dp = neon. (116)
0

Demonstragdo. Primeiramente, como M tem curvatura seccional constante Ky, pela
Proposicdo 2.51 temos que Rjj; = Ko ((Sikéﬂ — 5il(5jk)- Portanto, pelo Teorema 3.69 e

usando que a fun¢do de corte 1 é constante e igual a 1, pois A = &, temos que

GK GK u
g(r) - g(’)’) = /Q\D —Rynrn——+ Ry s

g R TeradGa)

GK Unk

GK
= —K — 4K — Sk || S
/Q\D 0 (51’1’51411 5rn5nr) K, + Ko (5rr(5kn 5rn5kn) KK |grad(u)|

Como 7,k < n —1 temos que J;;, = d,, = 0 e portanto

) GK GK  upyg
g(]“) g(f)/) = /Q\D Ko ((5rr(5nn 5rn5nr) " + KO (5rr5kn 5rn5kn) KK \grad(u)\ H
GK

= —Kobpr—d
/Q\D OrrKr]/l

n—1
= —Ko /Q\D Y (M) dp

r=1

:—K/ o W)du.
0 Q\DU 2(K)dp

115
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Suponha agora que I' e 7y sdo convexos e Ky < 0. Por [Boroz, Lema 1, p. 851] temos que
os conjuntos de niveis {p € M :u(p) < b}, t1 <b<t),ondeT={pe M:u(p)=t} e
v={p € M :u(p) = t1}, sdo convexos. Portanto, como esses conjuntos de niveis sdo
convexos, todas as curvaturas principais sdo positivas, pois a hessiana de u é positiva

semi-definida. Donde temos que ¢;,_»(x) > 0. Logo, temos que
G(0) ~G(1) = —Ko | oua()dp > 0.
O\D
Ou ainda, G(I') > G(7).

Por fim, considere y uma sequéncia de esferas geodésicas com raio convergindo para

0, I' convexa e Ky < 0. Pelo Lema 3.72 quando r — 0 temos que
0+ —Cr? < G(v) — nwy,.
Isto €,

G(y) > nwy.

Logo, como I é convexo, por [Boroz, Lema 1, p. 851], temos que os conjuntos de niveis
{peM:u(p) <b},b<tyondel ={p € M:u(p)=t}, sdo convexos. Portanto, como
esses conjuntos de niveis sdo convexos, todas as principais curvaturas sdo positivas,
pois a hessiana de u é positiva semi-definida. Donde temos que 0;,_»(x) > 0. Além

disso, por (115) e como Ky < 0 temos que
GgI) > nw, — Ko /fon—z(K)dy > nwy.
[
Agora faremos o caso no qual tomamos o conjunto de nivel regular da funcéo
distancia com sinal.

Corolario 3.74. Sejam (M, g) uma variedade Cartan-Hadamard, I C M uma hipersuperficie
mergulhada em M convexa e de classe C' tal que T limita um dominio ), isto é, 9Q) = T. Seja
u =df ey C M um conjunto de nivel regular convexo de u que limita um dominio D tal
que D C Qe Q\ D C UyI), com r = reach(T'). Seja dy a medida de volume Riemanniano

n-dimensional em M. Entio,
G) =G =~ [ R g (117)
O\D Ky
Em particular, se Kyy < —a < 0 entdo
GT) > G(y) +a / a2 (k). (118)
Q\D

Por fim, se I' é uma esfera geodésica e Ky < 0 entdo G(I') > nwy,.
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Demonstragio. Note que pelo Lema 3.6 item (2) temos que grad(u) é o normal para
fora ao longo de I' e y com respeito aos seus respectivos dominios. Além disso, pela
Proposigdo 3.25 temos que u é de classe C1! em U,(T), em particular, u é de classe C'!
em O\ D, pois O\ D C U,(T) por hipétese.

Além disso, assuma que 7y = (dy)~ l(—g), com 0 < £ < r, como 7 é convexo temos,
pelo Lema 3.34, que dp é convexa em M. Assim, como df = d; +¢ temos que df. é
convexa em ) \ D. De fato, considere p1,p2 € Q\ D e v : [t1, 2] — M a geodésica tal
que Y(t1) = p1, 7(t2) = p2 e ¥([t1, t2]) C Q\ D. Tome p € ¥([t1, t2]) arbitrario tal que
Y((1 = Aty +Aty) = p, A € [0,1]. Logo, como dp é convexa,

dr o y((1 — Mty + Aty) = dp(p) = do(p) +& = (dp o Y (1 — M)ty + Aty)) + ¢
< (1 —=A)dp oy(t1) + Adp o (t2)) + €
= ((1 = A)dp(p1) + Adp(p2)) + €
= ((1 = Mdr(p1) — &) + Adr(p2) —¢) +¢
= ((1 — A)dp(p1) + Adp(p2)) — e+ Ae — Ae+e
= (1= A)dr(p1) + Adr(p2)
= (1 = M)y o y(t) + Adp o y(f).

Pelo Lema 3.12 temos que |grad(u)| é constante nos conjuntos de nivel de u, donde
temos que uy, = Hess(u)(Ey, E,) = (Vg grad(u), E;) = 0. Portanto, pelo Teorema 3.69 e

usando que a fungdo de corte 77 é constante e igual a 1, pois A = @, temos que

g(I)— g(’)’) / —Ryprn— CK + Rykrn CK Lk

Kr ka |grad(u)|
/ Rynrn _d]/i

Suponha que Kj; < —a < 0. Dai para i # j temos que

—a > Ky = K(E;, E)
_ (EZ/ E]/ E]IE)
|Eil?|Ej|> — (Ei, Ej)*

=R

ijij-
Isto é, parai #j, —Riﬁj > a. Portanto, por (117) temos que

GK
() = G(y) + /Q L Ren
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n—1

>0+ [ a Y () d
1

\D /2

=G(y)+a /Q\D On—2(K)dp

Por fim, se I' é uma esfera geodésica e Kj; < 0 temos que <y é uma esfera geodésica
também, pois sdo hipersuperficies paralelas. Fazendo o raio de <y tender para 0 temos,
pelo Lema 3.72, que G(y) > nw,. Além disso, como dp é convexa em M e para p ¢ D
temos que d, = dp entdo as hipersuperficies paralelas exteriores de y sdo convexas;
assim, todas as curvaturas principais sdo positivas, pois a hessiana de dp é positiva

semi-definida. Donde temos que o;,,_»(x) > 0. Logo, por (118) temos que
G(0) > G +a [ oua(0dp
O\D
> nwy +a /Q\D p—o(K)dy
> nwy.
O

Lema 3.75. Sejam (M, g) uma variedade Riemanniana e U C M um subconjunto aberto de M
que € estrelado com respeito a um ponto p € U. Suponha que a curvatura de U é constante com
relagdo a todos os planos que sio tangentes as geodésicas que partem de p. Entdo a curvatura de

U é constante.

Demonstragio. Seja Ko o valor da curvatura de U, onde a curvatura de U é constante.
Considere (M, ) uma variedade Riemanniana completa, simplesmente conexa, com
curvatura constante Ky e da mesma dimensao de M. Seja p € M e i : TpM — Tg]VI uma
isometria. Defina f : U — M por f(q) = exppoio (expp)1(g). Pelo Teorema 2.92 temos

que f é uma isometria local, o que prova o requerido. O

A nossa ultima aplicacdo serda quando para uma variedade Riemanniana com curva-
tura seccional constante ndo-positiva e a hipersuperficie é uma esfera geodésica. Note
que esta aplicagdo é resultado das duas ultimas aplicagdo, pois podemos ver uma esfera

geodésica como um conjunto de nivel da funcdo distancia.

Corolario 3.76. Seja (M, ) uma variedade Riemanniana n-dimensional, B, uma bola geodésica

em M e suponha que Kp; < —a < 0. Entio

G(9Bp) > nwy +a /B on—2(K)dp > G(9By), (119)

0
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onde By é uma bola geodésica de raio p no espago hiperbolico H"(—a). Se temos a igualdade em

qualquer uma das duas desigualdades de (119) entdo B, é isométrica a By,

Demonstragdo. Seja B, uma bola geodésica de raio r < p com o mesmo centro que B,.

Como 9B, é uma esfera geodésica temos que ela é de classe C*, em particular C!'!, e
também é h-convexa, donde temos que 9B, é d-convexa pelo Lema 3.41. Portanto, pelo
Coroldrio 3.74 em (118) temos que
G(0B,) > G(9B,) +a / a0

o \Dr

Fazendo r — 0, pelo Lema 3.72, que
G(dBy) > nwy +a/ Tp—2(x)dp.
B

0
Assumindo que ocorre a igualdade nas inequagdes acima, pela Corolario 3.74 em (117)

que
/ acy—2(x)dp = G(0Bp) — G(9B,)
B,\Br
GK
= _/ anrn_dﬂ
B,\B;
— Ryl 4 x:d
/Bp\Br }; rnrn L L4 KA ],
Ou ainda,
n—1
aoy (k) = Z _anrnnl#rKl
r=1
n—1 n—1
Y allisk; = Y =Ryl lisk;
r=1 r=1
Isto é, Ryprn = —a. Entdo, como B, é estrelado, pelo Lema 3.75 temos que B, tem

curvatura constante igual a —a, portanto B, é isométrica a By.
Note que as curvaturas principais de 9B, sdo limitadas por cima por /acoth (+/ar)

por [Che89, Proposicdo 1.7.3, p. 184]. Consequentemente, em 0B;,

n—1 —
On—2(k) = Y (Ijgc;) > Z (IT;4/acoth (v/ar)) = (n — 1) (v/acoth (\/Er))n_z. (120)
k=1 k=1

Considere A(r, 0)df o elemento de volume (4rea superficial) de 9B, e H(r, 0) a fungdo
curvatura média de 0B, em coordenadas esferas geodésicas (geradas pela aplicacdo

exponencial no centro de B,. Por [Che89, Proposi¢do 1.5.4, p. 181], temos que

%A(r, 0) = (n — 1)H(r, 0) A(r, 0) > (n — 1)\/acoth (\/ar) A(r, ).

119
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Desenvolvendo a inequagdo acima para ry < r, obtemos

%A(r, 0) > (n — 1)v/acoth (v/ar) A(r,6)

d
EA(rl 6)

= >
A(r 0) —

d AGO)
/0 PTK) z/ro(n—l)\/ﬁcoth(\/ﬁt)dt

n(A(r,0)) —In r n —senh (vat) MY
In (A(r,6)) l(A(o/G))>(l ( 7z ) ))r

(n — 1)\/acoth (\/ar)

n—1 n—1
In (A(r,6)) — In (A (r0,6)) > In w> )m((%) )
senh (var) \ "
A(r,0) n L
(i) 2 || v
Ja

(senh (fr))nl
A(r, 0) S

A(ro,0) — senh \/_ro
Va
A, 6) > A (r9,0) <senh (Var ))
senh (\/arg
(=)
Fazendo-se ryp — 0 obtemos que
n—1
A(r,0) > <w> (121)

Consequentemente, de (120) e (121), temos que

0
nwy + a/ Tp—2(K)dy = nwy, + a/ /5 ) 0,_2(x)A(r, 6)d0dr
B 0 n-

' n—1
> na)n+a/ / (n — 1) (Vacoth (var))"~ (%) aedr
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, n—1
= nwy + /gn_l do /Op a(n — 1) (v/acoth (\/Er))n_z (W) dr

= Nwy, + Nwy, /p va(n —1) (cosh (\/Er))n_z sinh (v/ar) dr
0
= Nw,, + nwy, <(cosh (\/Er))n1>§
= nwy + nwy (cosh (\/Ep))n_1 — nwy (cosh (\/EO))H_1
= nwy + nwy (cosh (\/Ep))n_l — nwy,
= nwy (cosh (\/E,()))n_1
- G(BY).
Donde temos o desejado. Assumindo que ocorre a igualdade na inequacdo acima,

entdo vale a igualdade na primeira inequagao de (119) e, pelo mesmo argumento dado

anteriormente, temos que B, ¢ isométrica a Bj. [
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3.5 CURVATURA DO ENVOLTORIO CONVEXO

Definicao 3.77. Seja (M, g) uma variedade de Cartan-Hadamard, I C M uma hipersuperficie

convexa de M e € > 0. Definimos a curvatura total de I" por
G(I) = lim G(I), (122)
e—0
onde T¢ é uma hipersuperficie paralela exterior de T, isto é, T = (d)~1(e).

Note que a curvatura total de I' esta bem definida. De fato, como I' é convexa temos
que reach(T') > 0. Pelo Lema 3.24 temos que dj é C!'! préximo a I' e, consequentemente,
I'¢ ¢ C11. Pelo Teorema de Rademacher temos que I'* é C? em quase todo ponto; portanto,
G(I'®) esta definida em quase todo ponto.

Por outro lado, temos que &€ — G(I'¥) é crescente. De fato, considere £; < &, e note que
pelo Coroldrio 3.74 temos que G(I'*2) > G(I'*1), pois I'*1 é convexo, ja que I' é convexa.

Assim, como G(I'*) > 0, temos que a curvatura total de I' esta bem definida.

Definicao 3.78. Seja (M, §) uma variedade de Cartan-Hadamard e X C M um subconjunto de
M. Definimos o envoltério convexo de X, denotado por conv(X), como a intersegdo de todos

0s conjuntos convexos fechados em M que contém X. Definimos
Xo = dconv(X).

Note que se conv(X) tem interior ndo vazio, entdo Xy é uma hipersuperficie convexa.
Nesta secdo vamos mostrar que a curvatura total positiva de uma hipersuperficie
mergulhada T de classe C!'! em uma variedade de Cartan-Hadamard nao pode ser

menor que a curvatura total positiva de I'y.

Definicao 3.79. Seja X C R" um subconjunto de R" e p € X um ponto de X. Definimos o
cone tangente de X em p, denotado por T, X, como o limite de todas as semirretas partindo de

p e que passam por uma sequéncia de pontos em X \ {p} que converge para p.

Defini¢ao 3.80. Sejam (M, g) uma variedade Riemanniana n-dimensional, X C M um subcon-
junto de M e p € X um ponto de X. Definimos o cone tangente de X em p, denotado por
Ty X, por

T,X =Ty (explgl(X)> C TyM ~ R".

Além disso, dizemos que o cone tangente de X em p é préprio se ele nio é o proprio espago

tangente a X em p.
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Definicao 3.81. Seju X C R" um subconjunto de R". Dizemos que X é um cone se existe um
ponto p € X tal que para todo x € X e A > 0 temos que A(x — p) € X. Além disso, dizemos

que p é um vértice de X.

Lema 3.82. Sejam (M, g) uma variedade de Cartan-Hadamard, X C M um subconjunto
convexo de M e p € 0X um ponto de 0X. Entdo T,X é um cone proprio e convexo em T, M.
Além disso, exp,'(X) C TpX.

Demonstragio. A demonstragdo pode ser vista em [CG72, Proposigdo 1.8, p. 420]. O

Definicdo 3.83. Seja A C R" um subconjunto aberto de R". Dizemos que que uma fungio

u: A — R ésemiconcava com médulo linear se u é continua em A e existe C > 0 tal que
u(x +h) +u(x — h) — 2u(x) < C|hf?,

para todo x,h € R" tais que o segmento de reta que liga x — h e x + h estd contido em A. Além
disso, uma fungio v : A — R é chamada de semiconvexa com médulo linear se —v é

semiconcava com modulo linear.

Lema 3.84. Seja (M, §) uma variedade Riemanniana n-dimensional e I' C M uma hipersu-
perficie convexa de M que limita um dominio Q) C M. Entdo para cada ponto p € T existe
uma carta local (U, ¢) de M numa vizinhanga de p tal que ¢(U NT) é o grdfico de uma fungio
semiconvexa f : V — R para algum conjunto aberto V.C R"*~1. Em particular, T é duas vezes

diferencidvel em quase todo ponto.

Demonstragio. Considere p € I' arbitrdrio e tome U uma vizinhan¢a normal de p em
M. Tome ¢ = exprjl. Assim, pelo Lema 3.82 temos que ¢(I' N U) = exp;l(l“ Nnu) C
T,(NU) C R" e, além disso, Tp(I' N U) € um cone proprio e convexo em T, M, ou seja,
existe um hipreplano H em T, M que passa por 0 e é tal que T,,(I' " U) estd em um lado.
Logo, temos que ¢(I' N U) é o grafico de uma fungdo f: V C R*! — R com f > 0.
Afirmamos que f é semiconvexa.

De fato, como I' é convexa por hipétese, em cada ponto g € I' " U existe uma esfera
Sy de raio 7, para algum r > 0, que estd contida em M \ (). Note que a imagem de uma
vizinhanga aberta de g em S, pela f produz fungdes f, : V;, C R"1 — R de classe C?
tais que f; < f em uma vizinhanga V, de x; = f"}(q) € V.

Além disso, a Hessiana de f; em x; depende continuamente de q. Assim, como f; < f
em uma vizinhanga V; de x, temos que, parav € R" ' talque x+v € Vex —v €V

f(xq +0) +f(xq —0) — zf(xq) > lim fq(xq +0) +fq(xq —0)— 2fq(xq)
0|2 = Jo|=0 o2 '
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Donde temos que, para f(x) = sup, f(xg),

flx+v)+ f(x —v) —2f(x) > sup lim fo(xg +0) + fa(xg — v) — 2f,(xy)
0|2 g Jel-0 0|2 '

Mas, para uma funcdo duas vezes diferencidvel /1 : R” — R podemos pensar em sua

segunda derivada como uma forma quadratica V2, : R" — R, que pode ser calculada

por

. dhpyy(u) — dhyp—y(u)
th =1 p P
pl) = Lim, 2]

) h(p+u+u)—h(p+u—u) . h(p —u+u)—h(p —u—u)
limy, 0 4 4 —lim,| o P 4
: 2|u| 2|u|
= lim
|u|—0 2|u|
_ lim h(p +2u) + h(p — 2u) — 2h(p)
Ju—0 4lul?
_ i Mt u) +h(p —u) — 2h(p)
Jul 0 uf?

Portanto, concluimos que

fx+0)+ f(x —v) —2f(x) > sup lim fa(xqg +0) + fa(xg — ) — 2f4(xy)
|v]? T g [o[=0 |v[?

= sup V> S, (©)-
q

Tomemos assim C = sup, V2 f4:,(®) < 0 e obteremos que
fx+0)+ fx —v) = 2f(x) = C|o]?,

para todo x € V. Portanto, f é semiconvexa por definigdo.

Como ¢(I' " U) é o gréfico de f, para mostrarmos que I' é duas vezes diferenciavel
em quase todo ponto basta mostrarmos que f é duas vezes diferencidvel em quase
todo ponto. Mas por [CSo4, Teorema 2.3.1 item i, p. 42] temos que f é duas vezes

diferencidvel em quase todo ponto, pois f é semiconvexa com médulo linear. O

Defini¢ao 3.85. Sejam (M, g) uma variedade Riemanniana e B C M um subconjunto de M.
Dizemos que B é fortemente convexo se M contém exatamente uma geodésica minimizante
entre quaisquer dois pontos de B e tal geodésica estd contida em B. Dizemos também que B é
localmente convexo se cada ponto do fecho cl(B) de B tem uma vizinhanga fortemente convexa

U tal que B N U é fortemente convexo.
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Definicao 3.86. Sejam (M, ) uma variedade Riemanniana e B C M um subconjunto aberto
de M. Entdo o semiespago Hy do espago tangente T, M determinado por uma hipersuperficie H

que contém exp,;l(B) em p € 0B é chamado de elemento de suporte para B se Hy contém os

vetores tangentes iniciais de todas as geodésicas minimizantes partindo de p para pontos de B.

Hy é um elemento de suporte local para B se, para alguma vizinhanga U de p, Hy é um

elemento de suporte para B N U.

Lema 3.87. Sejam (M, g) uma variedade de Cartan-Hadamard, X C M um subconjunto
compacto de M e p € Xo \ X um ponto que é duas vezes diferencidvel. Entdo a curvatura de X

em p é nula.

Demonstragio. Seja conv(X) = exp,}l(conv(X)). Pelo Lema 3.82 temos que conv(X) C
Tyconv(X) e Tyconv(X) é um cone préprio em T, M. Entéo existe um hipreplano H em
Ty, M que passa por 0 e é tal que conov(X) estd em um lado.

Note que H N conv(X) é estrelado em p. De fato, seja ¢ € H N conv(X). Considere o
segmento pg C H e note que a aplicagdo expy leva pg em uma geodésica em M que esta
contida em conv(X), pois conv(X) é convexo. Consequentemente, pq C conv(X) como
desejado.

Suponha que H N conv(X) tenha mais de um ponto, entdo existe um segmento de
geodésica de M em X com ponto final em p, o que faz com que a curvatura em p se
anule, pois geodésicas tem curvatura nula, e temos o requerido.

Entdo, podemos supor que H N cono(X) = {p}. Suponha, por absurdo, que a curvatura
de Xo em p é positiva. Entdo existe uma esfera S em TyM a qual passa em p e contém
conv(X) no interior da bola cuja fronteira é S.

Seja S = expp(S) e note que X estd contido no interior da regido compacta limitada
por S em M. Note que como a derivada covariante depende somente das primeiras
derivadas da métrica temos que a segunda forma fundamental de S e S coincidem em
p. Em particular S tem curvatura positiva no fecho de uma vizinhanga U de p, pois S
tem curvatura positiva em p.

Seja S¢ a hipersuperficie paralela interior de S a uma distancia ¢ e U, a imagem de
U em S,. Entdo p € S¢, mas podemos escolher ¢ > 0 pequeno de modo a termos que
X C S¢, U, tem curvatura positiva e S intersecta conv(X) somente nos pontos de U,.

Seja Y a interseccdo da regido compacta limitada por S com conv(X). Entdo o interior
de Y é um conjunto localmente convexo em M. Consequentemente, por [CG72, Teorema

1.6, p. 418] temos que Y é uma subvariedade mergulhada com fronteira de M; além
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disso, Y possui um elemento de suporte local em todo ponto da fronteira. Portanto, por
[Ale78, Proposicdo 1, p. 285] temos que Y é convexo.
Assim, construimos um conjunto fechado e convexo de M que contém X mas ndo

contém p, o que nos dé a contradicdo desejada, pois p € conv(X). O

Definicao 3.88. Sejam (M, g) uma variedade Riemanniana e X C M um subconjunto convexo
de M. Dizemos que o segmento de geodésica « : [0,a] — M é perpendicular ao conjunto
X se a(0) € 90X e (a'(0), x — a(0)) < 0 para todo x € Ty X. Dizemos que «'(0) é 0 normal

para fora de X em «(0).

Lema 3.89. Sejam (M, g) uma variedade de Cartan-Hadamard e X C M um subconjunto
convexo de M. Entio os segmentos de geodésica que sio perpendiculares a X em pontos distintos

nunca se intersectam.
Demonstragido. A demonstragdo pode ser vista em [BO69, Lema 3.2 item 1, p. 7]. O

Definicao 3.90. Sejam (M, g) uma variedade Riemanniana, I' C M uma hipersuperficie

mergulhada em M, p € I um ponto de I' e v € T, M o normal para fora de T em p. Definimos

Py, = expy(ev).
Denote por I'® a hipersuperficie paralela exterior de I a uma distdncia e.

Lema 3.91. Sejam (M, g) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie
convexa de M que limita um dominio (). Considere p € I', v 0 normal para fora de I’ em p e
suponha que p® é um ponto duas vezes diferencidvel da hipersuperficie paralela exterior I'¢, para
e > 0. Entdo p* é um ponto duas vezes diferencidvel de I'¢ para todo € > 0. As curvaturas
principais de T€ em p® podem ser indexadas para que as aplicacdes e — x;(p) sejam de classe C
em 10, oo[. Além disso, se p é um ponto duas vezes diferencidvel de I', entio € — «;(p®) sdo de

classe C' em [0, oo].

Demonstragio. Seja I =]0, o[ e suponha que p® é um ponto duas vezes diferencidvel
de I'!, para algum ¢ € I fixado. Entdo podemos construir via coordenadas normais e
[FSo6, Lema 4.1, p. 211] um par de hipersuperficies S+ de classe C?> em M que passam
por pf, estdo contidas cada uma em um lado de I'* e tétm o mesmo operador forma que
I'* em p?,

Ss, (p°) = Sre(p) = Ss_(p°). (123)
Como S sdo de classe C2, suas respectivas func¢des distancias sdo de classe C2 em uma

vizinhanga aberta de p¢, pelo Lema 3.19. Sejam S%. as hipersuperficies paralelas de S
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com distancia 6 > —e. Se & > 0 consideramos S/, as hipersuperficies paralelas exteriores,
isto é, estas hipersuperficies estdo no lado onde o normal para fora de I'* aponta. Por
outro lado, se § < 0, consideramos S’ as hipersuperficies paralelas interiores, como

ilustram as Figuras 10 e 11.

20
S1

Figura 10: Hipersuperficies S} para § > 0.  Figura 11: Hipersuperficies S’ para § < 0.

Assim, como as funcdes distancia de S-. sdo de classe C?> em uma vizinhanca de S,
segue-se que S%. sdo de classe C? para J suficientemente préximo a 0. Além disso, pela
equacéo de Ricatti para os operadores forma de S%. [Graoo, Corolério 3.3, p. 34], temos
que szt sdo determinados pelas condigdes iniciais Sg. . Entdo de (123) temos que
S (P™) = Sgs (p°).

Disto temos que p*° é um ponto duas vezes diferenciavel de I'**° para J suficientemente
pequeno, pois I'**? tem hipersuperficies suporte S) em cada lado de p** e & — Sre(p?)
¢ de classe C1.

Por outro lado, como o operador forma é auto-adjunto, segue-se de [Kat8o, Teorema
6.8, Capitulo 2, p. 122] que seus auto-valores podem ser indexados e entdo eles sdo
funcdes de classe C! de e.

Note que do exposto acima temos que o conjunto A C I de distancias ¢ para as quais
p® é um ponto duas vezes diferencidvel de I'* e as curvaturas principais de I'* em p®
podem ser indexadas para que as aplicagdes ¢ — &;(p¢) sejam de classe C! em I é um
conjunto aberto. Assim, basta mostrarmos que A também é fechado e concluimos esta
primeira parte do Lema.

Para mostrarmos que A C I é fechado considere p® pontos duas vezes diferencidveis

de I'¥ para uma sequéncia ¢; € A convergindo para € € I. Se ¢ = 0, entdo temos que
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e € A, pois pelo argumentado acima [¢, e + J[C A para algum ¢ e temos o requerido.
Suponha entdo que ¢ > 0.

Note que as curvaturas principais de I'* sdo uniformemente limitadas superiormente,
pois uma bola de raio 5 rola livremente dentro de I'*/, para i suficientemente grande.
Notem também que as curvaturas principais de I'¥/ sdo limitadas inferiormente, pois I'*/
sdo convexos. Considere, assim, (S+); um par de hipersuperficies de classe C? que sdo
suporte para I'¥/, para cada i, como descritas acima. Por (123) temos que as curvaturas
de (S5+); sdo uniformemente limitadas. Entdo existe § > 0 independente de i tal que as
funcoes distancia de cada (S+); sdo de classe C?> em uma é-vizinhanca de pti. Escolha i
suficientemente grande para termos |¢; — €| < 6.

Disto temos que existem hipersuperficies paralelas Si que sdo de classe C? e sdo
suporte para I'* numa vizinhanca de p®. Portanto, p* é um ponto duas vezes diferencidvel
de T'¥. Donde temos que & — Sre(p¢) é de classe C! e pelo mesmo argumento temos
que as curvaturas principais de I'* em p® podem ser indexadas para que as aplicacdes
¢ — x;(p?) sejam de classe C! em I.

Com o exposto acima temos que € € A e, portanto, A é fechado. Para mostrarmos a
segunda parte, isto €, se p é um ponto duas vezes diferencidvel de I', entdo ¢ — «;(p®)
sdo de classe C! em [0, oo[, basta tomarmos acima I = [0, o[ e o resultado segue-se

analogamente. O

Proposicao 3.92. Sejam (M, g) uma variedade de Cartan-Hadamard e X C M um subconjunto
compacto de M. Suponha que conv(X) tem interior nio vazio e existe uma vizinhanga aberta U

de Xo = dconv(X) em M tal que X N U é uma hipersuperficie de classe C\'. Entdo
G(X N Xo) = G(Xo).

Demonstragio. Primeiramente, seja A C Xy um subconjunto de X, definimos A® como
a colegao de todos os pontos p;, = expp(ev) tais que p € A e v € o normal para fora de

Xp em p. Entdo, pelo Lema 3.89, temos que
G(Xp) = G((Xo \ X)) + G((Xo N X))

Note que quando ¢ — 0 temos que G(X§) — G(Xp), pela Definicdo 3.77. Entdo para

completar a prova é suficiente mostrar que, quando ¢ — 0,

G((Xo \ X)¥) = 0 e G((Xo N X)*) = G(Xo N X).
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Vamos mostrar que G((Xp \ X)?) — 0. Para isto, fixe € > 0 e considere 7 = p?, e para
todo € € [0, €] seja

X — X§
a projecdo p — p°. Note que r* é uma aplicagdo Lipschitz, pois X{j é um conjunto
convexo para todo &€ no dominio da aplicagdo, além disso, p* = r®(p). Considere
J(e) = Jacy(r). Entéo, para todo ¢ € [0, €],

G(Xo\X))= [ GK@J@)de. (124)

pEXo\X)*

onde GK(¢) = GKXS(pS). Para mostrarmos que G((Xp \ X)¢) — 0 é suficiente mostrar,

pelo Teorema da convergéncia dominada, que para quase todo 7 € (X \ X)¢,
1. GK(e)J(e) < C,para0 <e<¥¢ e
2. GK(¢)J(e) — 0, quando ¢ — 0.
Para provarmos (1) note que por [Graoo, Teorema 3.11, p. 39] temos que
J'(e) = (n — H(e)] (o), (125)

onde H(e) = Hxé(ps) > 0 é a curvatura média de X em p®. Indexemos as curvaturas

principais «;(¢) = x;(p®) de X§ em p® como no Lema 3.91. Por [Graoo, Corolério 3.5, p.

36], se «;(¢) sdo distintos, temos que

Ki(e) = =17 (€) = Ryini(€), (126)
onde R,;,i(¢) denota a curvatura seccional de M em p?, com respeito ao plano gerado
pelas dire¢des principais de X{ e seu vetor normal. De (126) segue-se que

/
GK'(¢) = (H?:_llxi(e)>
1

2
\

= K]/'(S)Hi_T/]‘Kl’(E)
j=1
n—1

= Z (—sz(s) — annj(8)> LT;ki(e)
j=1
n—1

= (—K](e)GK(E) - n]n]( )GK((;:)>
j=1

= —(n — 1)H(e)GK(e) — Z Ryyjnj(e) (()). (127)
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Como X{ é convexo temos que sua segunda forma fundamental é positiva semi-definida
e, portanto, iK((‘;) > 0,1 <j < n—1. Por outro lado, como a variedade M é uma
variedade de Cartan-Hadamard temos que Ryjnj(e) < 0,1 <j<n-—1. Logo, de (127),

temos que

GK(e)

(e > —(n —1)H(e)GK(e). (128)

GK'(¢) = —(n — 1)H(e)GK(e) — Z Rujuj(e)—

Como (128) vale quando x;(¢) sdo distintos, e GK(e) e H(e) sdo de classe C!, pelo Lema

3.91, temos que (128) vale em geral. Entdo temos por (128) e (125) que

(GK(8)](e))' = GK'(€)] () + GK(e)]'(¢)
> —(n = 1)H(e)GK(g)](e) + (n — 1)H(e) GK(¢) ] (¢) = 0. (129)

Integrando-se (129) entre ¢ e € e utilizando-se o Teorema fundamental do cdlculo

obtemos que

[ cxwjoyar =0
GK®)J(E) - CK©)J(e) > 0
GK(©)](9) < GK@J(®). (130)

Note que J(€) = 1, pois r* é a aplicagdo identidade. Além disso, a segunda forma
fundamental de X§ ¢ limitada superiormente, pois X é convexo e portanto tem suporte
por baixo por bolas de raio € em cada ponto, portanto, GK(€) é uniformemente limitado

superiormente. Logo, de (130), temos, para 0 < ¢ < g, que
GK(e)J(e) < GK(g)J(e) = GK(¢) < C. (131)

Para obtermos (2) considere 7 um ponto duas vezes diferenciavel de (X \ X)®. Pelo Lema

3.91 temos que p* é um ponto duas vezes diferencidvel de (X, \ X)* para todo € €]0, €].

Denote por «;(¢) as curvaturas principais de (Xp \ X)* em p® e também GKj(¢) = iﬁS)

Entao usando (128) e (126) temos

GKi(e) = (TTzr;(e))’
=Y ()L jak(e)
1

= Z <_K12(5) - Rnlnl(e)) Hj-Tf’i,j—T/lKj(S)
1
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= () _ GKi(e)
_;<—K1(€)GK1(€) R = 65 >
— ((n — 1)H(e) — xi(e)) GKie) — Y Rytns G11< )e)
1#i
—(n — 1)H(e)GK;(e) + GK(e) — Y_ Rypn Cj{K( (;e) (132
1#i

Como X{ é convexo temos que sua segunda forma fundamental é positiva semi-definida

e, portanto, GK(e) > 0O e iﬁg) > 0, I #i. Por outro lado, como a variedade M é uma

variedade de Cartan-Hadamard temos que R,;;;;(¢) < 0, #i. Logo, de (132), temos que

GKi(©) = (1~ DH(GK,©) + GK(©) — L Ry = GK (S’

1

> —(n —1)H(e)GKi(e). (133)

Logo, de (125) e (133) temos que

(GKi(e)] ()’ = GKi(e)] () + GKi(e)]'(e)
> —(n = 1)H(e)GKi(e)] () + (n — 1)H(e) GKi(e)/ (¢) = 0. (134)

Integrando-se (134) entre ¢ e € e utilizando-se o Teorema fundamental do calculo

obtemos que

[ K@y o
GKA(9)](©) — CK(&)](e) > 0
GK(9)](©) < GK@)](®). (135)

Note que J(e) < 1, pois em variedades de Cartan-Hadamard a projecdo sobre conjuntos
convexos é ndo-expansivel por [BHgg, Coroldrio 2.5, item (2), p. 178]. Além disso,
a segunda forma fundamental de Xg é limitada superiormente, pois Xg é convexo e
portanto tem suporte por baixo por bolas de raio € em cada ponto, portanto, GK;(¢) é

uniformemente limitado superiormente. Logo, de (135), temos, para 0 < & < g, que
GKi(e)](e) < GKi(8)](e) < GKi(e) < C. (136)

De (136) segue-se que

GK(e)](e) < Crile)
para todo 0 < i < n —1. Em particular, se inf;x;(¢) — 0 quando ¢ — 0, entdo
GK(e)J(e) — 0 e obtemos (2).
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Resta mostrar que inf; x;(¢) — 0 quando ¢ — 0. Para provarmos isto considere S
uma superficie positivamente curvada com fronteira que contém p em seu interior, é
ortogonal ao normal para fora v de Xo em p expy(ev) = P, e seu vetor de curvatura média
paralelo a —v. Note que podemos contruir S tomando-se uma vizinhanga da imagem
sob a aplicagdo exponencial de uma esfera em T, M de raio suficientemente grande que
passa por p e é ortogonal a v. Em particular note que as curvaturas principais de S
podem ser arbitrariamente pequenas.

Agora note que S estd contida no interior de conv(X). Suponha, por absurdo que nao,
neste caso contrario, podemos substituir S por uma superficie com curvatura menor,
assim, teriamos que 9S é disjunto de conv(X). Deste modo, procedendo como no Lema
3.87, podemos tomar uma superficie paralela interior a S ao longo de —v por uma
distancia J suficientemente pequena de modo a podermos substituir conv(X) por um
conjunto convexo menor contendo X, o que ndo é possivel.

Considere S¢ a hipersuperficie paralela exterior de S. Para € pequeno, 5¢ permanece
positivamente curvada, pela continuidade da curvatura. Além disso, como S sempre
tem um ponto no interior de conv(X), segue-se que S sempre tem um ponto no interior
do conjunto limitado por Xjj. Consequentemente inf; x;(¢) ndo pode ser maior que
todas as curvaturas principais de 5¢ em p?, pois S¢ é suporte em cada ponto. Mas as
curvaturas principais de S podem ser tomadas arbitrariamente pequenas. Entdo as
curvaturas principais de S podem ser tomadas arbitrariamente pequenas também, para
e suficientemente pequeno. Portanto inf; x;(¢) — 0 quando ¢ — 0, o que completa a
prova de (2).

Nos resta mostrar que G((Xp N X)?) — G(Xo N X). Mas para isto basta notar que
GK(e)J(e) — GK(0)]J(0) pelo Lema 3.91; com o item (1) e o Teorema da convergéncia

dominada segue-se o requerido. O

Definic¢do 3.93. Sejam (M, g) uma variedade Riemanniana e I' C M uma hipersuperficie

fechada, mergulhada de M e de classe C\'!. Definimos a curvatura total positiva de T como
G.(T) = / GKdo,
.
onde I'y C T éa regido onde GK > 0.

Coroldrio 3.94. Sejam (M, §) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie
fechada, mergqulhada de M e de classe C1*. Entdo

G+(I) = G(To).
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Demonstragdo. Primeiramente note que G.(I') > G.(I' NI). Além disso, como I' tem
suporte I'g por cima, GKr(p) > GKr,(p) > 0 para todos os pontos p € I' Ty duas vezes
diferencidveis. Consequentemente, G.(I' N Tp) = G(I' N I). Por fim, pela Proposicado 3.92,
temos que G(I' NTp) = G(I'p), 0 que completa a demonstragdo. O






A DESIGUALDADE
ISOPERIMETRICA

Teorema 4.1. Sejam (M, §) uma variedade de Cartan-Hadamard e I' C M uma hipersuperficie
mergulhada de M. Suponha que vale a desigualdade

G(T) > vol(S" 1), (137)

onde vol é o volume e S"~1 é a esfera unitdria de R"™. Entdo, para QO C M um conjunto limitado
de M, vale a desigualdade isoperimétrica

per(B™)"
vol(Bm)n—1

onde per é o perimetro e B" é a bola unitdria de R". E vale a iqualdade somente para bolas

per(QY)" = vol(Q)" 1, (138)

euclideanas.

Definicao 4.2. Sejam (M, g) uma variedade Riemanniana e U C M um subconjunto aberto de

M. Definimos o petfil isoperimétrico de U como a fungio Zy; : [0, vol(U)[— R dada por
Zy(v) = inf{per(Q) : QO C U, vol(Q) = v, diam(Q)) < oo},
onde diam é o didmetro, vol a medida de Lebesgue, per o perimetro e Zi;(0) = 0.
Note que para provar (138) é suficiente provar que
Iy 2 Ign,

para uma variedade de Cartan-Hadamard M. De fato, seja v < co e considere () C M
um conjunto aberto de M tal que vol(QY) = v, diam(Q)) < oo e Zp1(v) = per(Q2). Considere
também D C RR" um conjunto aberto de R" tal que vol(D) = v, diam(D) < oo e
IRrn(v) = per(D). Da hipétese temos que per(Q)) > per(D). Do problema isoperimétrico
em IR" temos que existe B" tal que vol(B") = v e per(D) > per(B"). Portanto, temos que
per(Q)) > per(B"), donde segue-se o requerido. Note também que é suficiente mostrar
que Zp > IRr para uma familia de bolas geodésicas abertas B C M cujo raio cresce

arbitrariamente e eventualmente cobre um conjunto limitado () C M.
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Definigao 4.3. Sejam (M, g) uma variedade Riemanniana e B C M uma bola geodésica de M.
Dizemos que () C B é uma regido isoperimétrica de M se () tem o menor perimetro dado um
volume, ou satisfaz per(Q)) = Zg(vol(Q2).

Lema 4.4. Sejam (M, §) uma variedade de Cartan-Hadamard e B C M uma bola geodésica
aberta. Entdo, para v €]0, vol(B)[, existe uma regido isoperimétrica Q2 C B com vol(Q)) = v.
Seja I' = dQO), H a curvatura média normalizada de T (sempre que esta estiver definida) e
I'yg = dconv(l'). Entdo

1. I'N B é de classe C* a menos do cunjunto fechado sing(I') de dimensdo de Haussdorf no
mdximo n — 8. Além disso, H = Hy = Hy(v) é constante em (I N B) \ sing(T).

2. T éde classe C1 dentro de uma vizinhanga aberta U de dB em M. Além disso, H < Hy
em quase todo ponto de U NT.

3. d(sing(T'), o) > €9 > 0.
Em particular, I é de classe CY dentro de uma vizinhanga aberta de To em M.

Demonstragio. (1) Segue de [GMT83, Teorema 2, p. 29].

(2) Segue de [Strgy, Teorema 3.6, p. 659].

(3) Primeiramente note que sing(I') é um conjunto fechado pelo item (1) do Lema 4.4.
Além disso, temos que sing(I') C B pelo item (2) do Lema 4.4. Entdo é suficiente mostrar
que os pontos p € I'N Ty N B sdo nédo singulares. Esse é o caso, pois TpI' C Tycono(')
pelo Lema 3.82, que é um subconjunto convexo de T, M, pelo Lema 3.82. Portanto, T),I
estd contido em um semiespaco de T, M gerado por qualquer hiperplano de Ty,cono(I')
em p. Disso temos que T,I' é um hiperplano por [Sim83, Corolario 37.6, p. 220].
Consequentemente, I serd de classe C* em uma vizinhanga de p por [Moro3, Proposigdo

3.5, p- 5046]. ]

Seja () C B a regido isoperimétrica de volume v dada pelo Lema 4.4. Pela Proposigao
3.92 temos que G(Ip) = G(I' N Ty). De (137) e da Defini¢do 3.77 podemos aplicar o
Coroldrio 3.74 e obtemos que G(I'y) > nw,. Entao temos que

nwn < G(To) = G NTo) = /F Ko, (139)

onde GK denota a curvatura de Gauss-Kronecker de I'. Note que GK > 0 em I' N Iy,

pois todos os pontos de I' N Iy sdo localmente convexos. Além disso, pela desigualdade
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geométrica-aritmética temos que GK < H"~! em I'NT. Entdo, por (139) e pelo Lema
4.4, temos que
nwy, < GKdo

TNl

< H" ldo
I'nly

:/ H”_1d0+/ H" 4o

TNTNoB TNToNB

:/ H"‘lda+/ Hg_lda
I'NCHNIB T'NCHNB

g/ Hgld(7+/ Hg’lda
T'NCNIB TNCoNB

g/ H3_1d0+/ H ldo
TMaB TNB

= Hg_lper(ﬂ). (140)

Consequentemente segue-se que

1

) " Hy(per(), (141)

nwy,

per(€2)

Ho(vol(Q)) > (

onde Hy(a) é a curvatura média de uma bola de perimetro 2 em R". Por [Rit17, Teorema
3.2, p.- 248] temos que Zp é continua e ndo-decrescente e, portanto, pelo Teorema
de Lebesgue sobre diferenciagdo de fun¢des monotonicas [RSN56, Teorema 1, p. 5],
Ip é diferencidvel em quase todo ponto. Além disso, por [Hsig2, Lema 4, p. 170]
Zp(v) = (n — 1)Hp(v) em todos os pontos de diferenciabilidade v €]0, vol(B)[. Entéo, por

(141), temos, em quase todo ponto de [0, vol(B)], que
Ty(v) = (n — 1)Ho(v) > (n — 1)Ho(v) = Zia(0)- (142)

Consequentemente, integrando-se (142) entre 0 e v e utilizando-se o Teorema funda-

mental do célculo obtemos que,

v v
/ Tp(t)dt > / Trn(t)dt
0 0
Tp(v) — Ip(0) = Zrn(v) — Zrn(0)
Zp(v) > Irn(v), (143)
para todo v € [0, vol(B)[, como desejado. Assim, estabelecemos (137) para variedades

de Cartan-Hadamard. Nos resta mostrar que a igualdade vale em (137) somente para

bolas Euclideanas.
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Lema 4.5. Seja (M, §) uma variedade de Cartan-Hadamard e Q) C M um subconjunto limitado
de M tal que vale a igqualdade na inequagdo (138). Entdo I é estritamente convexa, de classe C*
e tem curvatura média constante Hy. Além disso, as curvaturas principais de I' sdo todas iguais
a Ho.

Demonstragio. Se vale a igualdade na inequagdo (138) entdo vale a igualdade na inequa-
¢do (143) para alguma bola B C M grande o suficiente para conter () e vol(()) = v. Isso,
por sua vez faz com que valha a igualdade nas inequagoes (141) e (140). Note que da

igualdade em (140) temos, em particular, que

[ H o= [ Hg e [ H e (144)
Al TN9B rNB

Como Hp > 0 e H > 0 nos respectivos dominios temos, de (144), que
H" (T \ Tp) = 0. (145)

Assim, por (145), temos que
= ro. (146)

Como ilustram as Figuras 13 e 12.

Fﬂrg

Figura 12: Em roxo a 4rea de integracio do Figura 13: Em laranja e verde as dreas de inte-

lado esquerdo de (144) gracdo do lado direito de (144)

Note também da igualdade em (140) temos que

[ m e [ Hgle= [ Hpldes [ Hildo
TAlHN9B TACHNB TAloN9B TAloNB

/ H" 'do = / Hg_lda. (147)
T'NToNIB TNToNB
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Logo, de (147), temos que
g l=H, (148)

em (I'N B) \ sing(I'). Novamente pela igualdade em (140) temos que

GKdo = H" 4o, (149)
I'nTy I'nly

Logo, de (148) e (149) temos que
GK=H""!= Hg_l. (150)

em (I'N B) \ sing().

Por (146), I' é convexa. Afirmamos que para todo ponto p € I'N B, T,I' é um
hiperplano. De fato T,I' C Tyconv(I') pelo Lema 3.82, que é um subconjunto convexo de
TyM, pelo Lema 3.82. Portanto, Tyl esta contido em um semiespaco de T,»M gerado
por qualquer hiperplano de Tycono(I') em p. Disso temos que T,I' € um hiperplano por
[Sim83, Corolario 37.6, p. 220].

Assim, I' N B é de classe C*. Por outro lado, pelo Lema 4.4 item (2), préximo a 9B, I'
é localmente o grafico de uma funcédo de classe C L1 e entdo, todo ponto de I' tem um

normal unitdrio que é Holder continua, isto é, para n(p) e n(q) vetores normais a I' em

p e g, respectivamente, tem-se que |n(p) —n(g)| < Clp —¢g|*, onde C >0e0 < a < 1.

Além disso, I' tem H"~! em quase todo ponto curvatura média Hy, por (145). Disso
segue-se que I é de classe C* em uma vizinhanca de dB. Por fim, por (150) implica que

todas as curvaturas principais de I' sdo iguais a Hy em todos os pontos. O

Definicao 4.6. Sejam (M, d) um espago métrico e X,Y C M dois subconjuntos ndo-vazios de
M. Definimos a distancia de Hausdorff de X e Y por

dy(X,Y) = max ¢ supdy(x),supdx(y) p .
xeX yeY

Lema 4.7. Sejam (M, g) uma variedade de Cartan-Hadamard, I C M uma hipersuperficie
convexa de M e T; uma sequéncia de hipersuperficies convexas de classe C* que convergem para
I' com respeito a distdncia de Hausdorff. Suponha que as curvaturas principais de I'; sejam

limitadas por cima por uma constante uniforme. Entdo T é de classe C'1.

Demonstragio. Seja p € M um ponto de M, T = exp;l(l") el; = exp;l(l"i). Entdo TI;

é de classe C? e suas curvaturas principais sdo uniformemente limitadas por cima.

Segue-se disso e do Teorema do rolamento de Blaschke [Howgg, Teorema 1.1, p. 472]
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que uma bola de raio ¢ rola dentro de T;. Entdo uma bola de raio ¢ rola dentro de T, ou
reach(I’) > 0. Consequentemente, pelo Lema 3.24, T é de classe C1'!, donde temos que I’

é de classe C11. O

Agora, suponha que valha a igualdade em (138) para alguma regido () em uma
variedade de Cartan-Hadamard M. Assim vale a igualdade sucessivamente em (141),
(140) e (139). Entdo temos que G(I'g) = nw,. Mas, pelo Lema 4.5, temos que I' é convexo,
oul =Ty. Entao

g = nwy,. (151)

Seja Ay = reach(I'). Note que, pelo Lema 4.5, I' é de classe C*. Entdo, pelo Lema 3.24,
A1 > 0. Seja u = df. Entdo, pelo Lema 3.19, I') = u~1(—A\) serd uma hiperfuperficie de
classe C* para A € [0, A4].

Para um ponto p € I' arbitrério, seja py o ponto obtido por movermos p a uma
distancia A ao longo da geodésica para dentro ortogonal a I' em p, e defina Ry,;,,(A) =

Rinm(pa). Afirmamos que, para A € [0, Aq],
Rlnln(A) =0. (152)

De fato, note que para A suficientemente pequeno I'y é positivamente curvado pela
continuidade da curvatura. Seja A o supremo de x < A tal que T’y é positivamente
curvada em [0, x[. De (137) temos que G(I'y) > nw,. Entdo, por (151) e pelo Corolério

3.74, temos que

02 new, — lim G(T) = G(1) ~ lim G = — [ R dpe 20,
A=A A=A O\D+ Kr

A

onde Dy é o limite das regides limitadas por I'y quando A — A. Entdo Ryu(A) = 0 para
A < A. Como Rypn(A) =0 para A < A temos, por [Graoo, Coroldrio 3.3, p. 34], que

S'(A) = 82, (153)

para A < A, onde S(A) é o operador forma de I'y em p,. Pelo Lema 4.5 temos que

S5(0) = Hyold, onde Id é a transformacao identidade. Entao, resolvendo-se (153) obtemos

S'(A) = S2()N)
S'\N)
S2(A)

A Sl(t) A
dt = / 1dt
0 S2(t) 0




4.1 A DESIGUALDADE PARA CURVATURA TOTAL EM DIMENSOES 2 E 3

1 A
(‘%% =4
1

A

1
HOMSON
11t
S(A) B S(0)
S = 1 L 1. (154)

para A < A. De (154) temos que S(A) = HyId, onde

Hy
H) = 1—AHy (155)

Agora suponha que A < A;. Entdo I'y serd uma hipersuperficie de classe C? e,
portanto, por continuidade, tera curvatura principal constante Hy = lim, 1 H). Como
I'; é uma hipersuperficie fechada, Hy > 0. Entdo I'y tem curvatura positiva, o que nédo
é possivel se A < Ay. Entdo concluimos que A = Ay, 0 que prova (152).

Agora suponha, por absurdo, que as curvaturas principais de I'y sejam uniformemente
limitadas superiormente para A < Ay, entdo I'y, é uma hipersuperficie de classe C!! pelo
Lema 4.7, 0 que ndo é possivel, pois Ay = reach(I'). Entdo algumas curvaturas principais
de I') crescem arbitrariamente, quando A — A;. Mas I'y tem curvaturas principais
constantes. Entdo todas as curvatura principais de I'y crescem arbitrariamente. Logo,
pela equagdo de Gauss, todas as curvaturas seccionais de I'y crescem arbitrariamente.
Consequentemente, pelo Teorema da Bonnet-Myers, o didmetro de I'y converge para
zero. Em outras palavras, I') colapsa para um ponto, digamos xp, quando A — A;.

Entdo I' = 0By, ou Q) = By, uma bola geodésica de raio A; e centro xo. Além disso, a
condicdo Ry, = 0 significa que ao longo de cada segmento de geodésica que conecta x
a 9B, a curvatura seccional de M com respeito aos planos tangentes desses segmentos
de geodésica se anula. Entdo, pelo Lema 3.75, todas as curvaturas seccionais de B,, se

anulam, o que prova o requerido.

4.1 A DESIGUALDADE PARA CURVATURA TOTAL EM

DIMENSOES 2 E 3

Comecamos obtendo a desigualdade para curvatura total em dimens&o 3.
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Sejam (M, g) uma variedade de Cartan-Hadamard 3-dimensional e I' uma hipersuper-
ficie convexa de classe C11 em M, isto é, uma subvariedade convexa de M de dimensao

2. Entdo queremos mostrar que
G(I) > vol(S?), (156)

onde S? denota a esfera unitaria de R3 e vol denota seu volume.

Suponha, primeiramente, que T é suave e note que vol(S?) = 47t.

Considere Kr a curvatura seccional de I' dada pela métrica induzida de M, Ky a
curvatura seccional de M e GK a curvatura de Gauss-Kronecker de I'.

Pelo Teorema de Gauss-Bonnet [Chao6, Teorema V.2.6, p.243] [Peto6, Capitulo 4, se¢do

3, p.102] temos que

/r Kpdo = 272X(T), (157)

onde do é a forma volume de I' e X'(I') é a caracteristica de Euler-Poincaré de I'.

Em nosso caso, como I' é uma hipersuperficie convexa, isto é, a fronteira de um
conjunto compacto e convexo com pontos interiores, temos que X (I') = 2.

Sejam x1, kp as curvaturas principais de I' com dire¢des principais associadas Eq, E3,
respectivamente. Assim, como GK = xjxy, temos pela Formula de Gauss para uma

hipersuperficie [dC15, Observacdo 2.6, p. 145] que
Kr(E1, E2) = Km(Eq, Ez) + GK. (158)
Logo, de (157) e (158), temos que
/F(KM +GK)do =4r
/rGKdU =4 — /FKMdO'. (159)
Assim, como Kp; < 0, de (159) concluimos que

G(T) = / GKdo = 47 — / Kydo > 471 = 00l(S2).
T T

Para provarmos o caso em que I' é de classe C"!, aplicamos a técnica feita na demons-
tragdo do Teorema 3.69 que consiste em considerar I' como conjunto de nivel da fungdo
distancia com sinal e na suavizac¢do desta funcao.

Agora obteremos a desigualdade para curvatura total em dimenséao 2.



4.1 A DESIGUALDADE PARA CURVATURA TOTAL EM DIMENSOES 2 E 3

Sejam (M, g) uma variedade de Cartan-Hadamard 2-dimensional e I' uma hipersuper-
ficie convexa de classe C11 em M, isto é, uma subvariedade convexa de M de dimensao

1. Entdo queremos mostrar que
G(I) > vol(SY), (160)

onde S! denota o disco unitario de IR? e vol denota seu volume.
Suponha, primeiramente, que T é suave e note que vol(S') = 27t.
Considere Kt a curvatura de I' e K, a curvatura seccional de M.
Para o caso particular em que M = R? temos pelo Teorema de Fenchel [dC14, Teorema
3, p- 480] que
/r Krds > 27m.

Assim, por uma extensdo do Teorema de Fenchel para variedades de Cartan-Hadamard

[BcH74, Teorema 2, p. 185], temos que

/Krds > 2w — / KydA, (161)
r T

onde T é um tubo sobre I' de raio suficientemente pequeno para ndo termos auto-

intersecgdes. Assim, como Kjy; < 0, de (161) concluimos que
G(T) = /Kpds > 271 — / KydA > 27 = 0ol(Sh).
r T

Para provarmos o caso em que I' é de classe C1'!, aplicamos a técnica feita na demons-
tragdo do Teorema 3.69 que consiste em considerar I' como conjunto de nivel da fungdo

distancia com sinal e na suavizagdo desta funcao.
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