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R E S U M O

Baseados no artigo “Total curvature and the isoperimetric inequality in Cartan-Hadamard

manifolds”, de Mohammad Ghomi e Joel Spruck [GS21], estudamos uma fórmula de

comparação para a curvatura total de conjuntos de níveis em variedades Riemannianas.

Em particular, para os casos em que a variedade tem curvatura seccional constante, ou

para bolas geodésicas em variedades com curvatura seccional limitada superiormente

por uma constante real negativa. Com o método de Kleiner generalizado, esta fór-

mula de comparação foi aplicada ao problema isoperimétrico em espaços de curvatura

não-positiva de modo a obter uma versão equivalente para a conjectura de Aubin.

Palavras-chave: Variedades de Cartan-Hadamard, geometria Riemanniana, geometria

métrica, perfil isoperimétrico
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A B S T R A C T

Based on the article “Total curvature and isoperimetric inequality in the Cartan-

Hadamard manifolds”, by Mohammad Ghomi and Joel Spruck [GS21], we study

a comparison formula for the total curvature of level sets in Riemannian manifolds.

In particular, for cases where a manifold has a constant sectional curvature, or for

geodesic balls in a manifold with a sectional curvature bounded above by a negative real

constant. With the generalized Kleiner method, this comparison formula was applied

to the isoperimetric problem in spaces of non-positive curvature in order to obtain an

equivalent version for the Aubin conjecture.

Keywords: Cartan-Hadamard manifolds, Riemannian geometry, metric geometry,

isoperimetric profile
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1 I N T R O D U Ç Ã O

Grosso modo, uma variedade de Cartan-Hadamard M é uma variedade Riemanniana

completa, simplesmente conexa e com curvatura seccional não-positiva. Uma hipersu-

perfície convexa (fechada) Γ ⊂ M é a fronteira de um conjunto compacto e convexo

com interior não vazio. Nas condições da Definição 3.22, se Γ é de classe C1,1, sua

curvatura de Gauss-Kronecker GK está bem definida em quase todo ponto, de modo

que sua curvatura total é G(Γ) =
∫

Γ|GK|dσ, onde dσ é a forma de volume para Γ. Neste

contexto, surgem os dois problemas a seguir.

Problema 1.1. Para M uma variedade de Cartan-Hadamard n-dimensional e Γ ⊂ M uma

hipersuperfície convexa de classe C1,1, vale a seguinte desigualdade

G(Γ) ≥ vol(Sn−1), (1)

onde Sn−1 denota a esfera unitária em Rn e vol é o volume?

A resposta para o Problema 1.1 é sim quando n = 2, 3, devido ao Teorema de Gauss-

Bonnet e a equação de Gauss. Mas, para n ≥ 4 o problema ainda está aberto. A

principal motivação para o estudo do Problema 1.1 é sua conexão com o problema

isoperimétrico para variedades de Cartan-Hadamard, a saber:

Problema 1.2. Para M uma variedade de Cartan-Hadamard n-dimensional e Ω ⊂ M um

conjunto limitado, vale a seguinte desigualdade isoperimétrica

per(Ω)n ≥ per(Bn)n

vol(Bn)n−1 vol(Ω)n−1, (2)

onde Bn é uma bola unitária em Rn e per é o perímetro, com igualdade somente se Ω é uma bola

em Rn?

O Problema 1.2 é conhecido como a conjectura de Cartan-Hadamard que, em di-

mensão qualquer, foi introduzida em 1976 por Thierry Aubin [Aub76] e poucos anos
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2 introdução

depois por Mikhail Gromov [Mik81] [Mik01], Yuri Burago e Viktor Zalgaller [BV88].

Em dimensão 2, esta conjectura foi verificada como válida em 1926 por André Weil

[Ber02] e redescoberta em 1933 por Beckenbach e Radó [BR33]. Em dimensão 3 e 4 a

conjectura foi provada por Bruce Kleiner [Kle92] em 1992 e Chris Croke [Cro84] em

1984, respectivamente.

Nesta dissertação de mestrado, estudamos o artigo de Mohammad Ghomi e Joel

Spruck [GS21], que foi motivado pelo trabalho de Kleiner [Kle92], no qual mostra-se

que para n = 3, a desigualdade para a curvatura total (1) implica a desigualdade

isoperimétrica (2). Em [GS21], Ghomi e Spruck provaram que esta implicação é válida

no caso n-dimensional. Ou seja, uma resposta afirmativa para o Problema 1.1 implica

uma resposta afirmativa para o Problema 1.2.

Esta dissertação de mestrado está organizada como a seguir. No Capítulo 2, recor-

damos algumas definições importantes da geometria Riemanniana e fixamos notação.

Além disso, revisamos um conjunto de fatos básicos sobre coordenadas normais e o

Lema de Gauss generalizado. Por fim, estudamos a regularidade da aplicação exponen-

cial.

No Capítulo 3, estudamos as ferramentas necessárias para provarmos o Teorema 4.1;

em particular, na Seção 3.1 apresentamos alguns fatos básicos sobre a regularidade da

função distância em variedades Riemannianas. Na Seção 3.2, discutimos algumas noções

de convexidade em variedades de Cartan-Hadamard e mostramos que é suficiente

estabelecer a desigualdade (1) para hipersuperfícies com função distância convexa.

Dedicamos as Seções 3.3 a 3.5 para o estudo de uma fórmula de comparação, com a qual

prova-se que a curvatura total positiva do envoltório convexo de uma hipersuperfície

não pode ser maior que a curvatura total positiva da própria hipersuperfície.

Finalmente, no Capítulo 4, é estabelecida a conexão entre os Problemas 1.1 e 1.2.



2 P R E L I M I N A R E S

2.1 definições básicas

As variedades Riemannianas serão o espaço ambiente no qual estudaremos os resultados

obtidos por Mohammad Ghomi e Joel Spruck no artigo “Total curvature and the

isoperimetric inequality in Cartan-Hadamard manifolds” [GS21]. Assim, a seguir

definimos as métricas Riemannianas e as variedades Riemannianas.

Definição 2.1. Uma métrica Riemanniana de classe Ck, 1 ≤ k ≤ ∞, em uma variedade

diferenciável M é uma lei que faz corresponder a cada p ∈ M uma aplicação gp : TpM× TpM→
R satisfazendo, ∀u, v, w ∈ TpM e ∀λ ∈ R,

1. gp(u, v) = gp(v, u).

2. gp(u + v, w) = gp(u, w) + gp(v, w).

3. gp(λu, v) = λgp(u, v) = gp(u, λv).

4. gp(u, u) ≥ 0.

5. gp(u, u) = 0 ⇐⇒ u = 0.

6. Se X e Y são campos diferenciáveis em um aberto U ⊂ M, então a função:

U ⊂ M→ R

p 7→ gp(X(p), Y(p))

é de classe Ck, 1 ≤ k ≤ ∞, em U.

Definição 2.2. Uma variedade Riemanniana n-dimensional e classe Ck, 1 ≤ k ≤ ∞, é um

par (M, g) onde

3



4 preliminares

1. M é uma variedade diferenciável de classe Ck.

2. g é uma métrica Riemanniana em M.

Em uma variedade Riemanniana podemos construir uma função distância, que

será induzida pela métrica Riemanniana da variedade, de forma que a variedade

Riemanniana juntamente com esta distância seja um espaço métrico. Além disso,

definimos também a distância entre dois conjuntos.

Definição 2.3. Uma aplicação diferenciável c : I → M de um intervalo aberto I ⊂ R em uma

variedade diferenciável M chama-se uma curva. A restrição de uma curva c a um intervalo

fechado [a, b] ⊂ I chama-se segmento.

Definição 2.4. Sejam (M, g) uma variedade Riemanniana e c : [a, b] → R um segmento.

Definimos o comprimento do segmento c por

lb
a(c) =

∫ b

a

√
gc(t)(c′(t), c′(t))dt.

Definição 2.5. Sejam (M, g) uma variedade Riemanniana e p, q ∈ M pontos de M. Definimos

a distância induzida pela métrica g por

d(p, q) = dg(p, q) = inf
c∈Λpq

l(c),

onde c ∈ Λpq se c : [a, b]→ M é um segmento de curva em M com c(a) = p e c(b) = q.

Definição 2.6. Sejam (M, g) uma variedade Riemanniana e X, Y ⊂ M subconjuntos de M.

Definimos a distância entre conjuntos por

d(X, Y) = in f {d(x, y) : x ∈ X, y ∈ Y}.

Além disso, fixado um subconjunto X ⊂ M, definimos a distância ao subconjunto X por

dX(·) = d(X, ·).

Além de uma função distância, podemos construir outras ferramentas geométricas

em variedades Riemannianas; uma delas é o volume de regiões. Sejam (M, g) uma

variedade Riemanniana, p ∈ M um ponto e (U, x) um sistema de coordenadas de M

tal que p ∈ x(U). Considere uma base ortonormal {e1, . . . , en} em TpM e, escrevendo

Xi(p) =
∂

∂xi
(p) na base {ei}, isto é, Xi(p) = ∑j aijej, obtemos que

gik(p) = ⟨Xi, Xk⟩ (p) = ∑
j,l

aijakl⟨ej, el⟩(p) = ∑
j,l

aijaklδjl = ∑
j

aijakj = (aaT)ik,
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donde segue-se que det(gij)(p) = det(aaT) = det(a)2. Com isso, através da fórmula

para calcularmos o volume de paralelepípedos em Rn, podemos calcularmos o volume

vol(X1(p), . . . , Xn(p)) do paralelepípedo formado pelos vetores X1(p), . . . , Xn(p) em TpM,

pois vol(X1(p), . . . , Xn(p)) = det(a)vol(e1, . . . , en) = det(a), onde vol(e1, . . . , en) é o volume

do paralelepípedo formado pelos vetores e1, . . . , en em Rn. Portanto, utilizando somente

a expressão da métrica Riemanniana no sistema de coordenadas (U, x) temos que

vol(X1(p), . . . , Xn(p)) =
√

det(gij)(p).

Com isso, definimos a seguir o volume de regiões em variedades Riemannianas.

Definição 2.7. Sejam (M, g) uma variedade Riemanniana e R ⊂ M um região, isto é, um

subconjunto aberto e conexo de M, cujo fecho é compacto. Suponha que R está contida em uma

vizinhança coordenada x(U) de um sistema de coordenadas (U, x), e que a fronteira x−1(R) ⊂ U

tem medida nula em Rn. Definimos o volume vol(R) de R pela integral em Rn

vol(R) =
∫

x−1(R)

√
det(gij)dx1 . . . dxn. (3)

Uma construção importante para o estudo de variedades diferenciáveis é a de conexão

afim, a partir desta construção podemos definir uma estrutura igualmente importante

em variedades diferenciáveis, o paralelismo. A seguir definiremos uma conexão afim

em uma variedade diferenciável.

Definição 2.8. Sejam M uma variedade diferenciável, X(M) o conjunto dos campos de classe

C∞ em M e D(M) o anel das funções reais de classe C∞ em M. Definimos uma conexão afim

em uma variedade diferenciável M como uma operação

∇ : X(M)×X(M)→ X(M)

(X, Y) 7→ ∇XY

tal que

1. ∇X(Y + Z) = ∇XY +∇XZ,

2. ∇ f X+gYZ = f∇XZ + g∇YZ,

3. ∇X( f Y) = f∇XY + X( f )Y,

onde X, Y, Z ∈ X(M) e f , g ∈ D(M).
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Na definição de conexão afim podemos tomar as devidas restrições para um subcon-

junto aberto U ⊂ M e teremos

∇ : X(U)×X(U)→ X(U).

Assim, podemos obter sua expressão em coordenadas e, com isso, motivaremos a defi-

nição dos símbolos de Christoffel. Tome (U, x) um sistema de coordenadas; escrevemos

X = ∑i xiXi e Y = ∑i yiXi, donde temos

∇XY = ∇∑j xjXj

(
∑

i
yiXi

)

= ∑
j

xj∇Xj

(
∑

i
yiXi

)

= ∑
j

xj

(
∑

i

(
Xj(yi)Xi + yi∇Xj Xi

))
(4)

Com isso, podemos definir os símbolos de Christoffel.

Definição 2.9. Seja M uma variedade diferenciável e considere (U, x) um sistema de coordenadas

em M e uma conexão afim ∇ em U. Definimos os símbolos de Christoffel Γk
ij, 1 ≤ i, j, k ≤ n,

de ∇ no sistema de coordenadas (U, x) por

∇Xj Xi = ∑
k

Γk
ijXk.

Da Definição 2.9 concluímos que Γk
ij são funções diferenciáveis e de (4) obtemos a

expressão em coordenadas de uma conexão afim:

∇XY = ∑
j

xj

(
∑

i

(
Xj(yi)Xi + yi∇Xj Xi

))

= ∑
j,i

xj

(
Xj(yi)Xi + yi ∑

k
Γk

ijXk

)

= ∑
j,i

(
xjXj(yi)Xi + xjyi ∑

k
Γk

ijXk

)

= ∑
k

(
∑

j
xjXj(yk) + ∑

j,i
xjyiΓk

ij

)
Xk.

A partir da escolha de uma conexão afim em uma variedade diferenciável temos uma

derivada de campos de vetores ao longo de curvas. A seguinte proposição mostra esse

fato.
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Proposição 2.10. Seja M uma variedade diferenciável com uma conexão afim ∇. Então existe

uma única lei que associa a um campo vetorial V = V(t) ao longo da curva diferenciável

c : I → M, um outro campo vetorial
DV
dt

ao longo de c, denominado derivada covariante de

V ao longo de c, tal que:

1.
D
dt

(V + W) =
DV
dt

+
DW
dt

, onde W é um campo de vetores ao londo de c.

2.
D
dt

( f V) =
d f
dt

V + f
DV
dt

, onde f é uma função diferenciável em I.

3. Se V é induzido por um campo de vetores Y ∈ X(M), isto é, V(t) = Y(c(t)), então
DV
dt

= ∇ dc
dt

Y.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.2, p.57].

Obtemos da Proposição 2.10 a expressão clássica para a derivada covariante

DV
dt

= ∑
k

{
dvk
dt

+ ∑
j,i

Γk
ij

dxj

dt
vi

}
Xk

Observe que
DV
dt

difere da derivada usual no espaço euclidiano por termos que envol-

vem os símbolos de Christoffel.

Com isso, temos uma noção natural de paralelismo.

Definição 2.11. Seja M uma variedade diferenciável com uma conexão afim ∇. Um campo

vetorial V = V(t) ao longo de uma curva c : I → M é chamado paralelo (com respeito a ∇)

quando
DV
dt

= 0, para todo t ∈ I.

Com esta definição podemos construir o transporte paralelo de vetores ao longo de

curvas como segue na proposição abaixo.

Proposição 2.12. Sejam M uma variedade diferenciável com uma conexão afim ∇, c : I → M

uma curva diferenciável em M e V0 um vetor tangente a M em c(t0), t0 ∈ I, isto é, V0 ∈ Tc(t0)M.

Então existe um único campo de vetores paralelo V = V(t) ao longo de c, tal que V(t0) = V0.

(V(t) é chamado de transporte paralelo de V0 ao longo de c)

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.6, p.58-59].

Note que a definição de conexão afim foi feita em um contexto de variedades dife-

renciáveis, isto é, não depende da métrica Riemanniana. Assim, queremos relacionar
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a conexão afim de uma variedade diferenciável com a métrica Riemanniana de uma

variedade Riemanniana. Para isso, faremos as definições de compatibilidade da conexão

com a métrica e de conexão simétrica a seguir.

Definição 2.13. Seja (M, g) uma variedade Riemanniana com uma conexão afim ∇. A conexão

é dita compatível com a métrica g, quando

X⟨Y, Z⟩ = ⟨∇XY, Z⟩ + ⟨Y,∇XZ⟩,

com X, Y, Z ∈ X(M).

A partir da definição de compatibilidade da conexão com a métrica em variedades

Riemannianas podemos estabelecer algumas equivalências desta definição com relação

a derivada covariante, como na próxima proposição.

Proposição 2.14. Seja (M, g) uma variedade Riemanniana com uma conexão afim ∇. As

seguintes afirmações são equivalentes:

1. ∇ é compatível com a métrica g.

2. Para todo par V e W de campos de vetores ao longo da curva diferenciável c : I → M

tem-se
d
dt
⟨V, W⟩ =

〈
DV
dt

, W
〉

+
〈

V,
DW
dt

〉
, t ∈ I.

3. Para toda curva diferenciável c e quaisquer pares de campos de vetores paralelos P1 e P2 ao

longo de c, tivermos

⟨P1, P2⟩ = constante.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 3.2, p.59-60 e

Corolário 3.3, p. 60].

Definição 2.15. Seja M uma variedade diferenciável com uma conexão afim ∇. Dizemos que a

conexão afim ∇ é simétrica quando

∇XY−∇YX = [X, Y],

para todo X, Y ∈ X(M).

A partir de uma conexão afim simétrica em uma variedade diferenciável podemos

obter uma condição acerca dos símbolos de Christoffel desta conexão, isto é, seja M



2.1 definições básicas 9

uma variedade diferenciável com uma conexão afim simétrica ∇. Considere (U, x) um

sistema de coordenadas em M, então para todo i, j = 1, . . . , n, temos que

∇Xi Xj −∇Xj Xi = [Xi, Xj] = 0,

ou ainda,

Γk
ij = Γk

ji,

com k = 1, . . . , n.

Com as definições de compatibilidade da conexão com a métrica e de uma conexão

simétrica podemos construir uma única conexão afim em uma variedade Riemannina,

chamaremos-a de conexão Riemanniana, e as condições para para que isso ocorra são

descritas no Teorema de Levi-Civita a seguir.

Teorema 2.16 (Levi-Civita). Dada uma variedade Riemanniana (M, g) existe uma única

conexão afim ∇ em M, chamada de conexão Riemanniana, satisfazendo as condições:

1. ∇ é simétrica.

2. ∇ é compatível com a métrica Riemanniana.

Demonstração. A demonstração pode ser vista em [dC15, Teorema 3.6, p.61-62].

Com este teorema podemos obter a expressão para os símbolos de Christoffel da

conexão Riemanniana de uma variedade Riemanniana (M, g). Considere (U, x) um

sistema de coordenadas em M. Das condições de simetria e compatibilidade com a

métrica dadas pelo Teorema 2.16 para a conexão Riemanniana temos que

⟨∇Xj Xi, Xk⟩ =
1
2
{

Xj (⟨Xi, Xk⟩) + Xi
(
⟨Xk, Xj⟩

)
− Xk

(
⟨Xj, Xi⟩

)
−⟨[Xj, Xi], Xi⟩ − ⟨[Xi, Xk], Xj⟩ − ⟨[Xi, Xj], Xk⟩

}
=

1
2
(
∂igkj + ∂jgik − ∂kgji

)
. (5)

onde gij = ⟨Xi, Xj⟩ e ∂i =
∂

∂xi
. Por outro lado, obtemos que

⟨∇Xj Xi, Xk⟩ = ⟨∑
l

Γl
ijXl , Xk⟩

= ∑
l

Γl
ij⟨Xl , Xk⟩

= ∑
l

Γl
ijglk. (6)
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Como a matriz (gij) admite uma inversa (gij), teremos de (5) e (6) que

∑
l

Γl
ijglkgkm =

1
2
(
∂igkj + ∂jgik − ∂kgji

)
gkm

∑
l

Γl
ijδlm =

1
2
(
∂igkj + ∂jgik − ∂kgji

)
gkm

Γm
ij =

1
2

gkm (∂igkj + ∂jgik − ∂kgji
)

(7)

Podemos também definir conceitos clássicos, como o campo gradiente de uma função,

a hessiana de uma função e a divergência de um campo, para o ambiente de variedades

Riemannianas como a seguir.

Definição 2.17. Sejam (M, g) uma variedade Riemanniana, X ∈ X(M) e f ∈ D(M). Definimos

o gradiente de f como o campo vetorial grad( f ) em M dado por

⟨grad( f )(p), v⟩ = d fp(v),

onde p ∈ M e v ∈ TpM.

Definição 2.18. Sejam (M, g) uma variedade Riemannina, X ∈ X(M) e f ∈ D(M). Defina o

operador hessiana de f como

∇2( f )(X) = ∇X(grad( f )).

Definição 2.19. Sejam (M, g) uma variedade Riemanniana, X, Y ∈ X(M) e f ∈ D(M). Defina

a hessiana de f como

Hess( f )(X, Y) = X(Y( f ))− (∇XY)( f ).

Podemos relacionar os conceitos acima, isto é, consideremos (M, g) uma variedade

Riemanniana, X, Y ∈ X(M) e f ∈ D(M). Segue-se diretamente das Definições 2.17, 2.18

e 2.19 que

Hess( f )(X, Y) = ⟨∇Xgrad( f ), Y⟩ = ⟨∇2( f )(X), Y⟩. (8)

De fato,

⟨∇Xgrad( f ), Y⟩ = X⟨grad( f ), Y⟩ − ⟨grad( f ),∇XY⟩

= X(d f (Y))− d f (∇XY)

= X(Y( f ))−∇XY( f )

= Hess( f )(X, Y).
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Definição 2.20. Sejam (M, g) uma variedade Riemanniana, X ∈ X(M) um campo de vetores

em M e p ∈ M um ponto arbitrário em M. Considere a aplicação TX : TpM→ TpM dada por

TX(Y(p)) = ∇YX(p). Definimos a divergência de X como a função divp(X) : M→ R dada

por divp(X) = trace(TX).

Observação 2.21. Para a divergência de um campo podemos obter uma expressão em coorde-

nadas. Sejam (M, g) uma variedade Riemanniana, X ∈ X(M) um campo de vetores em M e

p ∈ M um ponto arbitrário em M. Considere Ei, i = 1, . . . n, um referencial ortonormal de

TpM. Note que, com respeito a essa base ortonormal, a divergência de X é dada por:

divp(X) = trace(TX) =
n

∑
i=1
⟨∇Ei X, Ei⟩(p).

2.2 geodésicas e a aplicação exponencial

Dois conceitos fundamentais para a geometria são o de geodésica e o de aplicação

exponencial. Ambos os conceitos estão relacionados e os exibiremos a seguir.

Definição 2.22. Seja (M, g) uma variedade Riemanniana. Uma curva parametrizada γ : I → M

é uma geodésica em t0 ∈ I se
D
dt

(
dγ

dt

)
= 0 no ponto t0; se γ é geodésica em t, para todo t ∈ I,

dizemos que γ é uma geodésica. Se [a, b] ⊂ I e γ : I → M é uma geodésica, a restrição de γ a

[a, b] é chamada segmento de geodésica ligando γ(a) a γ(b).

Lema 2.23. Sejam (M, g) uma variedade Riemanniana, γ : I → M uma geodésica em M. Então

existe um único campo G em TM, chamado campo geodésico e cujo fluxo chamamos de fluxo

geodésico, cujas trajetórias são da forma t 7→ (γ(t), γ′(t)).

Demonstração. A demonstração pode ser vista em [dC15, Lema 2.3, p.70-71].

Proposição 2.24 (Existência e unicidade de geodésicas). Sejam (M, g) uma variedade

Riemanniana e p ∈ M. Então existem um aberto V ⊂ M, p ∈ V, números δ > 0 e ε1 > 0 e

uma aplicação de classe C∞

γ :]− δ, δ[×U → M,

onde U = {(q, v) ∈ TM : q ∈ V, v ∈ TqM, |v| < ε1}, tais que a curva t 7→ γ(t, q, v),

t ∈]− δ, δ[, é a única geodésica de M que no instante t = 0 passa por q com velocidade v, para

cada q ∈ V e cada v ∈ TqM com |v| < ε1.
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Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.5, p.71].

Para a construção da aplicação exponencial precisaremos provar algumas proprieda-

des das geodésicas. Uma dessas propriedades é que podemos aumentar a velocidade

de uma geodésica diminuindo o seu intervalo de definição, ou vice-versa, e isto é,

essencialmente, o que afirma o próximo lema.

Lema 2.25 (Homogeneidade de uma geodésica). Sejam (M, g) uma variedade Riemanniana

e γ(t, q, v) a geodésica definida no intervalo ]− δ, δ[. Então a geodésica γ(t, q, av), a ∈ R, a > 0,

está definida no intervalo
]
−δ

a
,

δ

a

[
e

γ(t, q, av) = γ(at, q, v).

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.6, p.72].

A outra propriedade desejada é que podemos tornar o intervalo de definição de uma

geodésica uniformemente grande em uma vizinhança do ponto de partida, como a

seguir.

Proposição 2.26. Sejam (M, g) uma variedade Riemanniana e p ∈ M. Então existem uma

vizinhança V de p em M, um número ε > 0 e uma aplicação de classe C∞,

γ :]− 2, 2[×U → M,

onde U = {(q, w) ∈ TM : q ∈ V, w ∈ TqM, |w| < ε} tais que t 7→ γ(t, q, v), t ∈]− 2, 2[, é a

única geodésica de M que no instante t = 0 passa por q com velocidade w, para cada q ∈ V e

cada w ∈ TqM, com |w| < ε.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.7, p.72].

Para (M, g) uma variedade Riemanniana, p ∈ M um ponto arbitrário e v ∈ TpM

temos que a associação v 7→ γ(t, p, v) define uma aplicação do fibrado tangente TM

no conjunto das geodésicas de M. Além disso, como uma consequência do Lema 2.25,

podemos definir uma outra aplicação de um subconjunto do fibrado tangente para M,

que associa a cada reta saindo da origem de TpM à geodésica, da seguinte maneira.

Definição 2.27. Sejam (M, g) uma variedade Riemanniana, p ∈ M e um subconjunto do

fibrado tangente U ⊂ TM dado por U = {(q, w) ∈ TM : q ∈ V, w ∈ TqM, |w| < ε}, onde V é
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uma vizinhança de p em M e ε > 0 um número. Considere t 7→ γ(t, q, v), t ∈]− 2, 2[, a única

geodésica dada pela Proposição 2.26. Chamamos a aplicação exp : U → M dada por

exp(q, v) = γ(1, q, v), (q, v) ∈ U,

de aplicação exponencial em U.

Observação 2.28. Note que a aplicação exponencial dada pela Definição 2.27 é diferenciável,

pois a geodésica γ é dada pelo Teorema de Existência e Unicidade de EDO’s, o que garante a

diferenciabilidade com relação aos parâmetros. Além disso, a restrição da aplicação exponencial a

um aberto do espaço tangente, isto é,

expq : Bε(0) ⊂ TqM→ M

será dada por expq(v) = exp(q, v). Assim, expq é diferenciável e expq(0) = q.

Uma das propriedades mais importantes da aplicação exponencial é que existe

uma vizinhança da origem do espaço tangente na qual a aplicação exponencial é um

difeomorfismo sobre sua imagem e, basicamente, essa propriedade que nos possibilitará

construir as coordenadas normais posteriormente. Assim, a próxima proposição nos

garante essa propriedade.

Proposição 2.29. Sejam (M, g) uma variedade Riemanniana e q ∈ M. Então existe um ε > 0

tal que expq : Bε(0) ⊂ TqM→ M é um difeomorfismo de Bε(0) sobre um aberto de M.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.9, p.73].

Com os dois principais objetos definidos, as geodésicas e a aplicação exponencial,

podemos estudar mais algumas propriedades relevantes destes objetos. A saber, a

propriedade localmente minimizante das geodésicas e o fato, provado no Lema de

Gauss posteriormente, que a aplicação exponencial é uma “isometria radial”.

Definição 2.30. Sejam (M, g) uma variedade Riemanniana e uma aplicação contínua c :

[a, b]→ M do intervalo fechado [a, b] ⊂ R em M. Se existe uma partição a = t0 < · · · < tk = b

de [a, b] tal que as restrições c|[ti ,ti+1], i = 0, . . . , k− 1, são diferenciáveis, então dizemos que c

é uma curva diferenciável por partes. Além disso, dizemos que c liga os pontos c(a) e c(b).

Chamamos c(ti) de vértice de c, e o ângulo formado por lim
t→t+

i

c′(t) com lim
t→t−i

c′(t) é chamado de

ângulo do vértice c(ti).
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Precisaremos estender o conceito de transporte paralelo, dado pela Proposição 2.12,

às curvas diferenciáveis por partes. Para fazer isso, considere V0 ∈ Tc(t)M, t ∈ [ti, ti+1] e

estenda-o para um campo paralelo V(t), t ∈ [ti, ti+1]; tomando V(ti) e V(ti+1) como novos

valores iniciais, obteremos uma extensão de V(t) paralelamente ao intervalo [ti−1, ti+2],

e assim sucessivamente.

Definição 2.31. Sejam (M, g) uma variedade Riemanniana e γ : [a, b]→ M um segmento de

geodésica. Chamamos γ de minimizante se l(γ) ≤ l(c), onde l(·) indica o comprimento da curva

e c é uma curva diferenciável por partes qualquer ligando γ(a) a γ(b).

Os conceitos que serão introduzidos a seguir tem como objetivo nos dar estrutura

para provar o Lema de Gauss.

Definição 2.32. Sejam (M, g) uma variedade Riemanniana e A um conjunto conexo de R2 com

U ⊂ A ⊂ cl(U), U aberto em R2 e tal que a fronteira ∂A de A seja uma curva diferenciável por

partes com ângulos dos vértices distintos de π. Uma superfície parametrizada em M é uma

aplicação diferenciável s : A ⊂ R2 → M.

Observação 2.33. Nas condições da Definição 2.32, dizer que s é diferenciável em A equivale a

dizer que existe um aberto V ⊃ A onde s se estende diferenciavelmente. Além disso, a condição

sobre os ângulos dos vértices de A é necessária para que a diferencial de s não dependa da

extensão considerada.

Vamos agora adaptar algumas definições para o contexto de superfícies parametri-

zadas. Assim, considere (M, g) uma variedade Riemanniana e s : A ⊂ R2 → M uma

superfície parametrizada em M. Um campo de vetores v ao longo de s é uma aplicação

que associa a cada q ∈ A um vetor V(q) ∈ Ts(q)M, que é diferenciável, isto é, se f é uma

função diferenciável em M, então a aplicação q 7→ V(q) f é diferenciável.

Sejam (u, v) coordenadas cartesianas em R2. A aplicação u 7→ s(u, v0), onde v0 está

fixado e u está em uma componente conexa de A ∩ {v = v0}, é uma curva em M, e

ds
(

∂

∂u

)
, que será denotado por

∂s
∂u

, é um campo de vetores ao longo desta curva.

Dessa maneira, temos
∂s
∂u

definido para todo (u, v) ∈ A e
∂s
∂u

é um campo de vetores ao

longo de s. Define-se
∂s
∂v

analogamente.

Considere V um campo ao longo de s,
DV
du

(u, v0) é a derivada covariante ao longo

da curva u 7→ s(u, v0) da restrição de V a esta curva. Isso define
DV
du

(u, v) para todo

(u, v) ∈ A. Define-se
DV
dv

analogamente.
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Lema 2.34 (de simetria). Sejam M uma variedade diferenciável com uma conexão simétrica e

s : A→ M uma superfície parametrizada então

D
dv

∂s
∂u

=
D
du

∂s
∂v

.

Demonstração. A demonstração pode ser vista em [dC15, Lema 3.4, p.76-77].

Com as estruturas definidas podemos apresentar o Lema de Gauss, o qual nos dá

mais informações sobre a aplicação exponencial.

Lema 2.35 (de Gauss). Seja (M, g) uma variedade Riemanniana e considere p ∈ M, v ∈ TpM

tais que a aplicação exponencial expp(v) esteja definida e w ∈ Tv(TpM) ∼= TpM então

⟨(dexpp)v(v), (dexpp)v(w)⟩ = ⟨v, w⟩. (9)

Demonstração. A demonstração pode ser vista em [dC15, Lema 3.5, p.77-79].

Assim, podemos definir uma gama de conjuntos dados pela imagem da aplicação

exponencial que serão úteis posteriormente.

Definição 2.36. Sejam (M, g) uma variedade Riemanniana e V uma vizinhança da origem em

TpM tal que a aplicação exponencial expp seja um difeomorfismo em V. Chamamos expp(V) = U

de uma vizinhança normal de p.

Definição 2.37. Sejam (M, g) uma variedade Riemanniana e V uma vizinhança da origem em

TpM tal que a aplicação exponencial expp seja um difeomorfismo em V. Considere ε > 0 tal

que cl(Bε(0)) ⊂ V. Chamamos expp(Bε(0)) = Bε(p) de uma bola normal (ou geodésica) de

centro p e raio ε.

Definição 2.38. Sejam (M, g) uma variedade Riemanniana e Bε(p) de uma bola normal de

centro p e raio ε. Chamamos a fronteira de uma bola normal de esfera normal (ou geodésica)

de centro p e raio ε e denotamos-a por Sε(p).

Definição 2.39. Sejam (M, g) uma variedade Riemanniana e Bε(p) de uma bola normal de

centro p e raio ε. Chamamos as geodésicas em Bε(p) que partem de p de geodésicas radiais.

Pelo Lema de Gauss 2.35, as esferas normais são uma hipersuperfície (subvariedade

de codimensão 1) em M ortogonais às geodésicas radiais.

O outro fato geométrico que queremos apresentar é a propriedade minimizante das

geodésicas. Mostraremos, primeiramente, que localmente uma geodésica minimiza o

comprimento de arco.
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Proposição 2.40. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto, U ⊂ M uma

vizinhança normal de p e B ⊂ U uma bola normal de centro p. Considere γ : [0, 1]→ B um

segmento de geodésica com γ(0) = p. Se c : [0, 1]→ M é qualquer curva diferenciável por partes

ligando γ(0) a γ(1) então l(γ) ≤ l(c) e se a igualdade vale então γ([0, 1]) = c([0, 1]).

Demonstração. A demonstração pode ser vista em [dC15, Proposição 3.6, p.79-80].

Observação 2.41. Note que a Proposição 2.40 não garante um resultado global, isto é, se consi-

derarmos um segmento de geodésica suficientemente grande ele pode deixar de ser minimizante.

Por exemplo, seja M = S2 com a métrica induzida de R3 e considere as geodésicas que partem de

um ponto p, note que tais geodésicas deixam de ser minimizantes depois que passam pelo ponto

antípoda de p.

Teorema 2.42. Seja (M, g) uma variedade Riemanniana. Para cada p ∈ M existem uma

vizinhança W de p e um número δ > 0, tais que, para cada q ∈W

expq : Bδ(0) ⊂ TqM→ expq(Bδ(0))

é um difeomorfismo e expq(Bδ(0)) ⊃ W, isto é, W é vizinhança normal de cada um de seus

pontos.

Demonstração. A demonstração pode ser vista em [dC15, Teorema 3.7, p.80-81].

Definição 2.43. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto e W uma

vizinhança de p. Dizemos que W é uma vizinhança totalmente normal se W é vizinhança

normal de cada um de seus pontos, isto é, para cada q ∈W temos uma vizinhança V da origem

em TqM tal que

expq : V → expq(V)

é um difeomorfismo e expq(V) ⊃W.

Agora, de certo modo, apresentamos uma recíproca da proposição anterior que

mostrava que geodésicas minimizam o comprimento de arco. Ou seja, o próximo

corolário nos dá que se uma curva é minimizante do comprimento de arco então ela é

uma geodésica.

Corolário 2.44. Sejam (M, g) uma variedade Riemanniana e γ : [a, b]→ M uma curva diferen-

ciável por partes, com parâmetro proporcional ao comprimento de arco. Se γ tem comprimento

menor ou igual ao comprimento de qualquer outra curva diferenciável por partes ligando γ(a) a

γ(b) então γ é uma geodésica. Em particular, γ é uma geodésica.

Demonstração. A demonstração pode ser vista em [dC15, Corolário 3.9, p.81-82].
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2.3 curvaturas

Nesta seção apresentaremos uma definição de curvatura (seccional) que, intuitivamente,

mede o quanto uma variedade Riemanniana deixa de ser euclideana. Mas, antes disso,

vamos começar definindo o tensor de curvatura que será relacionado com a curvatura

seccional posteriormente.

Definição 2.45. Sejam (M, g) uma variedade Riemanniana. O tensor de curvatura de M é a

aplicação

R : X(M)×X(M)×X(M)→ X(M)

definida por

R(X, Y)(Z) = ∇Y∇XZ−∇X∇YZ +∇[X,Y]Z.

Observação 2.46. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.

Denotaremos g(R(X, Y)W, Z) por (X, Y, W, Z).

Proposição 2.47. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.

Considere f , g ∈ D(M) e X, Y, Z, W ∈ X(M). Valem as seguintes propriedades para R:

1. R( f X + gY, Z) = f R(X, Z) + gR(Y, Z).

2. R(X, f Y + gZ) = f R(X, Y) + gR(X, Z).

3. R(X, Y)(Z + W) = R(X, Y)Z + R(X, Y)W.

4. R(X, Y)( f Z) = f R(X, Y)Z.

5. R(X, Y)Z = −R(Y, X)Z

6. R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 (Primeira identidade de Bianchi).

7. (X, Y, Z, W) + (Y, Z, X, W) + (Z, X, Y, W) = 0.

8. (X, Y, Z, W) = −(Y, X, Z, W).

9. (X, Y, Z, W) = −(X, Y, W, Z).

10. (X, Y, Z, W) = (Z, W, X, Y).

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.2, p.100-101,

Proposição 2.4, p.101 e Proposição 2.5, p. 102-103].
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Podemos obter a expressão em coordenadas para o tensor de curvatura. Sejam (M, g)

uma variedade Riemanniana e R o tensor de curvatura de M. Considere p ∈ M, um

ponto arbitrário, e (U, x) um sistema de coordenadas em torno do ponto p. Indicaremos
∂

∂xi
= Xi. Logo,

R(Xi, Xj)Xk = ∇Xj∇Xi Xk −∇Xi∇Xj Xk +∇[Xi ,Xj]Xk

= ∇Xj

(
Γl

ikXl

)
−∇Xi

(
Γl

jkXl

)
= ∂jΓl

ikXl + Γl
ikΓp

jlXp − ∂iΓl
jkXl − Γl

jkΓp
ilXp

=
(

∂jΓl
ik + Γq

ikΓl
jq − ∂iΓl

jk − Γq
jkΓl

iq

)
Xl

= Rl
ijkXl , (10)

onde Rl
ijk = Γq

ikΓl
jq − Γq

jkΓl
iq + ∂jΓl

ik − ∂iΓl
jk.

Além disso, obtemos também que

(Xi, Xj, Xk, Xs) = g
(

R(Xi, Xj)Xk, Xs
)

= g
(

Rl
ijkXl , Xs

)
= Rl

ijkgls

= Rijks. (11)

Uma curvatura que, intuitivamente, mede o quanto uma variedade Riemanniana deixa

de ser euclideana é dada pela curvatura seccional. A definição da curvatura seccional

está intimamente relacionada com o tensor de curvatura e é dada a seguir.

Definição 2.48. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.

Considere p ∈ M, um ponto arbitrário, σ ⊂ TpM um subespaço bidimensional do espaço

tangente TpM e sejam x, y ∈ σ dois vetores linearmente independentes. Definamos a curvatura

seccional K(σ) como o número real

K(σ) = K(x, y) =
(x, y, x, y)

|x|2|y|2 − ⟨x, y⟩2 .

Proposição 2.49. Nas condições da Definição 2.48 a curvatura seccional K(σ) não depende da

escolha dos vetores x, y ∈ σ.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 3.1, p.105].
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Segue de um fato puramente algébrico, Lema 2.50, que o conhecimento da curvatura

seccional K(σ), para todo σ, determina completamente a curvatura R de uma variedade

Riemanniana (M, g).

Lema 2.50. Seja V um espaço vetorial tal que dim(V) ≥ 2, munido de um produto interno

⟨·, ·⟩. Sejam R : V × V × V → V e R′ : V × V × V → V aplicações tri-lineares tais que as

condições (7), (8), (9) e (10) da Proposição 2.47 sejam satisfeitas para

(x, y, z, t) = ⟨R(x, y)z, t⟩, (x, y, z, t)′ = ⟨R′(x, y)z, t⟩.

Se x, y são dois vetores linearmente independentes, escrevamos,

K(σ) =
(x, y, x, y)

|x|2|y|2 − ⟨x, y⟩2 , K′(σ) =
(x, y, x, y)′

|x|2|y|2 − ⟨x, y⟩2 ,

onde σ é o subespaço bidimensional gerado por x e y. Se para todo σ ⊂ V, K(σ) = K′(σ), então

R = R′.

Demonstração. A demonstração pode ser vista em [dC15, Lema 3.3, p.105-106].

A próxima proposição nos dá uma equivalência, com respeito ao tensor de curvatura,

para variedades Riemannianas com curvatura seccional constante.

Proposição 2.51. Sejam (M, g) uma variedade Riemanniana n-dimensional e R o tensor de

curvatura de M. Considere p ∈ M, um ponto arbitrário, e {e1, . . . , en} uma base ortonormal de

TpM. Escreva Rijkl = ⟨R(ei, ej)ek, el⟩, i, j, k, l = 1, . . . , n. Então K(σ) = K0 para todo σ ⊂ TpM,

se, e somente se,

Rijkl = K0
(
δikδjl − δilδjk

)
.

Demonstração. Primeiramente, considere X, Y, Z ∈ TpM e escreva-os na base dada, isto

é, X = ∑n
i=1 xiei, Y = ∑n

j=1 yjej e Z = ∑n
k=1 zkek. Perceba que

|X|2|Y|2 − ⟨X, Y⟩2 = ⟨X, X⟩⟨Y, Y⟩ − ⟨X, Y⟩2

=

〈
n

∑
i=1

xiei,
n

∑
i=1

xiei

〉〈
n

∑
j=1

yjej,
n

∑
j=1

yjej

〉
−
〈

n

∑
i=1

xiei,
n

∑
j=1

yjej

〉2

=
n

∑
i=1

x2
i

n

∑
j=1

y2
j −

n

∑
i=1

n

∑
j=1

(xiyjδij)2

=
n

∑
i=1

x2
i

n

∑
j=1

y2
j −

n

∑
i=1

(xiyi)2
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=
n

∑
i=1

n

∑
k=1

xixkδik

n

∑
j=1

n

∑
l=1

yjylδjl −
n

∑
i=1

n

∑
l=1

(xiyi)(xlyl)δil

=
n

∑
i=1

n

∑
k=1

xixkδik

n

∑
j=1

n

∑
l=1

yjylδjl −
n

∑
i=1

n

∑
l=1

xiylδil

n

∑
j=1

n

∑
k=1

xkyjδjk

=
n

∑
i=1

n

∑
k=1

n

∑
j=1

n

∑
l=1

xixkyjylδikδjl −
n

∑
i=1

n

∑
l=1

n

∑
j=1

n

∑
k=1

xixkylyjδilδjk

=
n

∑
i=1

n

∑
k=1

n

∑
j=1

n

∑
l=1

xixkyjyl
(
δikδjl − δilδjk

)
= ∑

i,j,k,l
xixkyjyl

(
δikδjl − δilδjk

)
. (12)

Agora, vamos demonstrar a proposição propriamente dita.

( =⇒ ) Suponha que K(σ) = K0 para todo σ ⊂ TpM. Definamos R : TpM× TpM×
TpM→ TpM por:

⟨R(X, Y)Z, el⟩ = K0 ∑
i,j,k

xiyjzk
(
δikδjl − δilδjk

)
.

Note que R satisfaz as condições (7), (8), (9) e (10) da Proposição 2.47. Além disso,

considere {u, v} vetores linearmente independentes arbitrários em σ e escreva-os na

base dada, isto é, u = ∑n
i=1 uiei e v = ∑n

j=1 vjej, usando-se (12), obtemos

K(σ) =
⟨R(u, v)u, v⟩
|u|2|v|2 − ⟨u, v⟩2

=

K0 ∑
i,j,k,l

uivjukvl
(
δikδjl − δilδjk

)
∑

i,j,k,l
uiukvjvl

(
δikδjl − δilδjk

)

= K0

∑
i,j,k,l

uiukvjvl
(
δikδjl − δilδjk

)
∑

i,j,k,l
uiukvjvl

(
δikδjl − δilδjk

)
= K0.

Portanto, K(σ) = K(σ) para todo σ ⊂ TpM, pois {u, v} foram tomados arbitrários, e pelo

Lema 2.50 temos que R = R. Disto segue-se que

Rijkl = Rijkl

= ⟨R(ei, ej)ek, el⟩
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= K0
(
δikδjl − δilδjk

)
,

como desejado.

(⇐=) Considere σ ⊂ TpM arbitrário e tome {X, Y} vetores linearmente independentes

arbitrários em σ. Note que, pela hipótese e por (12),

K(σ) =
⟨R(X, Y)X, Y⟩
|X|2|Y|2 − ⟨X, Y⟩2

=

〈
R

(
n

∑
i=1

xiei,
n

∑
j=1

yjej

)
n

∑
i=1

xiei,
n

∑
j=1

yjej

〉
|X|2|Y|2 − ⟨X, Y⟩2

=

n

∑
i=1

n

∑
j=1

x2
i y2

j
〈

R
(
ei, ej

)
ei, ej

〉
|X|2|Y|2 − ⟨X, Y⟩2

=

n

∑
i=1

n

∑
j=1

x2
i y2

j Rijij

|X|2|Y|2 − ⟨X, Y⟩2

=

n

∑
i=1

n

∑
j=1

x2
i y2

j K0
(
δiiδjj − δijδji

)
|X|2|Y|2 − ⟨X, Y⟩2

= K0

n

∑
i=1

n

∑
j=1

x2
i y2

j
(
1− δij

)
|X|2|Y|2 − ⟨X, Y⟩2

= K0

n

∑
i=1

x2
i

n

∑
j=1

y2
j −

n

∑
i=1

(xiyi)2

|X|2|Y|2 − ⟨X, Y⟩2

= K0
|X|2|Y|2 − ⟨X, Y⟩2
|X|2|Y|2 − ⟨X, Y⟩2

= K0,

como σ ⊂ TpM foi tomado arbitrário, segue o requerido.

Algumas combinações da curvatura seccional aparecem com tanta frequência que

daremos nomes a elas. São elas a curvatura de Ricci e a curvatura escalar, definidas a

seguir.
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Definição 2.52. Sejam (M, g) uma variedade Riemanniana e R o tensor de curvatura de M.

Considere p ∈ M um ponto arbitrário, X ∈ TpM um vetor unitário e {X1, X2, . . . , Xn−1} uma

base ortonormal de X⊥ ⊂ TpM. As médias:

Ric(X) =
1

n− 1

n−1

∑
i=1
⟨R(X, Xi)X, Xi⟩

e, tomando-se Xn = X,

S(p) =
1
n

n

∑
j=1

Ric(Xj) =
1

n.(n− 1)

n

∑
j=1

n

∑
i=1
⟨R(Xj, Xi)Xj, Xi⟩,

são chamados, respectivamente, de curvatura de Ricci na direção de X e de curvatura escalar

em p.

2.4 coordenadas normais

Nessa seção vamos introduzir as cartas coordenadas normais e as cartas coordenadas

de Fermi. Tais cartas coordenadas facilitam o entendimento das geodésicas em uma

vizinhança de um ponto ou de uma subvariedade.

Considere (M, g) uma variedade Riemanniana n-dimensional e p ∈ M um ponto arbi-

trário. Queremos construir cartas coordenadas ao redor de p ∈ M. Para isso tomemos

{ei}n
i=1 uma base arbitrária de TpM e note que podemos definir um isomorfismo entre

bases B : Rn → TpM dado por

B(x1, . . . , xn) =
n

∑
i=1

xiei. (13)

Definição 2.53. Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto arbitrário.

Considere U = expp(V) uma vizinhança normal de p e defina a aplicação ϕ = B−1 ◦ ( exp|V)
−1 :

U ⊂ M→ Rn

TpM Rn

U ⊂ M

(
expp

∣∣
V

)−1

B−1

ϕ
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onde B é o isomorfismo dado em (13). Chamamos o par (U, ϕ) de carta coordenada normal

em torno de p.

Nas condições da Definição 2.53 temos que para um ponto q ∈ U arbitrário ϕ(q) =

(x1(q), . . . , xn(q)), onde xi : U ⊂ M → R são aplicações. Como U é uma vizinhança

normal de p temos que expp : V → U é um difeomorfismo, em particular, uma bijeção.

Assim, tome v ∈ V ⊂ TpM tal que expp(v) = q e escreva v = ∑n
i=1 viei. Logo,

ϕ(q) = ϕ(expp(v))

= B−1 ◦
(

expp
∣∣
V

)−1 ◦ expp(v)

= B−1(v)

= B−1

(
n

∑
i=1

viti

)
= (v1, . . . , vn).

Disto, segue-se que,

xj

(
expp

(
n

∑
i=1

viti

))
= vj. (14)

Com isso, na próxima proposição apresentaremos algumas das propriedades pelas quais

mostramos a conveniência de escolhermos trabalhar com cartas coordenadas normais.

Proposição 2.54. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto arbitrário e

(U, {xi}) uma carta coordenada normal arbitrária centrada em p ∈ M. Valem que:

1. As coordenadas de p são (0, . . . , 0).

2. As componentes da métrica em p são gij = δij.

3. Para todo v = ∑n
i=1 vi

∂

∂xi

∣∣∣∣
p
∈ TpM, a geodésica γ(t), com γ(0) = p e γ′(0) = v, é

representada em cartas normais pala reta

γ(t) = (tv1, . . . , tvn). (15)

sempre que t estiver em um intervalo I ⊂ R que contem a origem 0 ∈ R, tal que

γ(I) ⊂ U.

4. Os símbolos de Christoffel nessas cartas zeram em p.
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5. Todas as derivadas parciais de gij nessas cartas se anulam em p.

Demonstração. A demonstração pode ser vista em [Lee18, Proposição 5.24, p.132-133].

As cartas coordenadas de Fermi são uma generalização natural das cartas coordenadas

normais quando substituímos um ponto na variedade por uma subvariedade. Assim, a

primeira coisa na qual esbarramos para fazer tal generalização é a aplicação exponencial

da variedade. Para contornar esse problema usamos a aplicação exponencial normal,

definida a seguir.

Definição 2.55. Sejam (M, g) uma variedade Riemanniana n-dimensional, Γ ⊂ M uma

subvariedade mergulhada e π : NΓ → Γ o fibrado normal de Γ em M. Considere U ⊂ TM o

domínio da aplicação exponencial dado na Definição 2.27. Chamemos UΓ = U ∩ NΓ ⊂ TM.

Chamamos a aplicação E : UΓ → M dada pela restrição exp|UΓ
: UΓ → M de aplicação

exponencial normal de Γ em M.

Podemos provar que aplicação exponencial normal é diferenciável e que restrita a

uma vizinhança adequada é um difeomorfismo.

Observação 2.56. Note que a aplicação exponencial normal dada pela Definição 2.55 é diferen-

ciável, pois é uma restrição da aplicação exponencial exp, que é diferenciável, ao aberto UΓ do

fibrado.

Proposição 2.57. Sejam (M, g) uma variedade Riemanniana n-dimensional, Γ ⊂ M uma

subvariedade mergulhada. Então existe uma vizinhança da seção nula do fibrado normal tal que

a aplicação exponencial normal E é um difeomorfismo sobre sua imagem.

Demonstração. A demonstração pode ser vista em [Lee18, Teorema 5.25, p. 133-135].

Definição 2.58. Sejam (M, g) uma variedade Riemanniana, Γ ⊂ M uma subvariedade mergu-

lhada de M e V uma vizinhança da seção nula em NΓ tal que a aplicação exponencial E seja um

difeomorfismo em V. Chamamos E(V) de vizinhança normal de Γ em M.

Assim, com o problema da aplicação exponencial contornado através da aplicação

exponencial normal, podemos definir as cartas coordenadas de Fermi.

Definição 2.59. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ arbitrário. Sejam U = E(V) uma vizinhança
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normal de Γ em M, ξ = (y1, . . . , yk) um sistema de coordenadas arbitrário em p e Ek+1, . . . , En

seções ortonormais de NΓ. Para (q, v) ∈ V, com v = ∑n
i=k+1 vi Ei|q, definimos a aplicação

ϕ = (x1, . . . , xn), ondexj

(
E
(

q, ∑n
i=k+1 vi Ei|q

))
= yj(q), j = 1, . . . , k

xj

(
E
(

q, ∑n
i=k+1 vi Ei|q

))
= vj, j = k + 1, . . . , n.

(16)

Chamamos o par (U, ϕ) de carta coordenada de Fermi em torno de p.

Note que (16) define, de fato, cartas coordenadas em p, pois a aplicação exponencial

normal é um difeomorfismo em vizinhanças normais.

A seguir faremos dois lemas técnicos, nos quais estudaremos algumas propriedades

das cartas coordenadas de Fermi.

Lema 2.60. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere (U, {xi}n
i=1) uma

carta coordenada de Fermi em torno de p então

∂

∂xk+1

∣∣∣∣
Γ

, . . . ,
∂

∂xn

∣∣∣∣
Γ

são ortonormais.

Demonstração. Seja q ∈ U um ponto arbitrário diferente de p. Temos que para k + 1 ≤ i ≤
n a curva integral de

∂

∂xi
iniciando-se em q é a geodésica γ definida por γ(t) = E(q, t Ei|q).

Então
∂

∂xi

∣∣∣∣
q

= γ′(0) = Ei|q .

Como Ei|q são ortonormais para k + 1 ≤ i ≤ n, segue-se o desejado.

Lema 2.61. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g). Considere a geodésica α normal a Γ com α(0) = p ∈ Γ

e α′(0) = v. Então existem cartas coordenadas de Fermi (U, {xi}n
i=1) tal que para t > 0

suficientemente pequeno temos
∂

∂xk+1

∣∣∣∣
α(t)

= α′(t) (17)

e
∂

∂xi

∣∣∣∣
p
∈ TpΓ,

∂

∂xj

∣∣∣∣∣
p

∈ TpΓ⊥ (18)
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para 1 ≤ i ≤ k e k + 1 ≤ j ≤ n. Além disso,

(xi ◦ α)(t) = tδik+1 (19)

para 1 ≤ i ≤ n.

Demonstração. Consideremos um referencial ortonormal {e1, . . . , en} em TpM da se-

guinte maneira: {e1, . . . , ek} formam uma base para TpΓ e {ek+1, . . . , en} são as seções

ortonormais Ek+1, . . . , En de NΓ em uma vizinhança de p, com Ek+1 = α′(0). Tomemos

(y1, . . . , yk) um sistema de coordenadas em Γ tal que
∂

∂yi
= ei, i = 1, . . . , k.

Seja (x1, . . . , xn) cartas coordenadas de Fermi de Γ em torno de p como na Definição

2.59.

Note que as condições em (18) são satisfeitas por construção. Além disso, como as

cartas coordenadas de Fermi são dadas pela aplicação exponencial normal, temos que a

curva integral de
∂

∂xk+1
iniciando-se em p é uma geodésica. Por outro lado,

∂

∂xk+1
= Ek+1

e, por construção, α′(0) = Ek+1, donde, pela unicidade das geodésicas, segue (17).

Por outro lado, em relação às cartas {xi}, temos que

α′(0) =
n

∑
i=1

(xi ◦ α)′(t)
∂

∂xi

∣∣∣∣
α(t)

. (20)

Aplicamos (17) em (20) e obtemos

∂

∂xk+1

∣∣∣∣
α(t)

=
n

∑
i=1

(xi ◦ α)′(t)
∂

∂xi

∣∣∣∣
α(t)

.

Equivalentemente, (xi ◦ α)′(t) = 0, i ̸= k + 1

(xi ◦ α)′(t) = 1, i = k + 1.

Donde,

(xi ◦ α)(t) = tδik+1.

Portanto, temos (19) e o resultado segue.

2.5 campos de fermi

Com as cartas coordenadas de Fermi definidas, podemos construir outras estruturas

para provarmos o Lema de Gauss generalizado posteriormente. Comecemos com os

campos de Fermi.
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Definição 2.62. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere U ⊂ UΓ, onde

UΓ é o domínio da aplicação exponencial normal na Definição 2.55. Tome (x1, . . . , xn) cartas

coordenadas de Fermi centradas em p. Dizemos que A ∈ X(U) é um campo de Fermi

tangencial se

A =
k

∑
i=1

ci
∂

∂xi
,

onde ci, i = 1, . . . , k, são constantes. Analogamente, dizemos que X ∈ X(U) é um campo de

Fermi normal se

X =
n

∑
j=k+1

dj
∂

∂xj
,

onde dj, j = k + 1, . . . , n, são constantes.

Para p ∈ Γ denotaremos por X(Γ, p)T e X(Γ, p)⊥ os espaços dos campos de Fermi

tangenciais e normais, respectivamente. Note que X(Γ, p)T e X(Γ, p)⊥ são espaços

vetoriais de dimensão k e n− k, respectivamente. Além disso, considere

X(Γ, p) = X(Γ, p)T ⊕X(Γ, p)⊥

o espaço dos campos de Fermi em p. Quando Γ é um ponto, os campos de Fermi

normais coincidem com os campos coordenados das cartas normais. Note que se

Ek+1, . . . , En são rotacionados por uma matriz ortogonal constante então o espaço do

campos de Fermi permanece o mesmo.

Uma das conveniências de usarmos coordenadas de Fermi é a simplificação que ocorre

com algumas estruturas, como por exemplo a função distância a uma subvariedade.

Definição 2.63. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere (x1, . . . , xn) cartas

coordenadas de Fermi centradas em p. Para σ > 0 tome

σ2 =
n

∑
i=k+1

x2
i e N =

n

∑
i=k+1

xi

σ

∂

∂xi
. (21)

Vamos mostrar que σ e N estão bem definidos, isto é, são independentes da escolha

das cartas.

Lema 2.64. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Então as definições de σ e N

dadas na Definição 2.63 são independentes da escolha das cartas coordenadas de Fermi em p.
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Demonstração. Considere (x1, . . . , xn) e (y1, . . . , yn) cartas coordenadas de Fermi centra-

das em p e {Ek+1, . . . , En} e {Fk+1, . . . , Fn} as seções ortogonais de NΓ que dão origem a

tais cartas. Podemos escrever

Fi =
n

∑
j=k+1

ajiEj,

onde (aji)j,i é uma matriz de funções no grupo ortogonal O(n− k) com cada aji ∈ D(Γ).

Então

xi

(
E

(
n

∑
l=k+1

rl Fl

))
= xi

(
E

(
n

∑
l=k+1

rl

(
n

∑
j=k+1

ajlEj

)))

= xi

(
E

(
n

∑
j=k+1

(
n

∑
l=k+1

rlajl

)
Ej

))

=
n

∑
l=k+1

rlail

=
n

∑
l=k+1

ailyl

(
E

(
n

∑
j=k+1

rjFj

))
. (22)

De (22) segue-se que xi = ∑n
l=k+1 ailyl. Então

n

∑
i=k+1

x2
i =

n

∑
i=k+1

(
n

∑
l=k+1

ailyl

)(
n

∑
j=k+1

aijyj

)

=
n

∑
i=k+1

n

∑
l=k+1

n

∑
j=k+1

ailaijylyj

=
n

∑
l=k+1

n

∑
j=k+1

(
n

∑
i=k+1

ailaij

)
ylyj

=
n

∑
l=k+1

n

∑
j=k+1

δl jylyj

=
n

∑
i=k+1

y2
i .

Além disso,
∂xi

∂yj
= 0 para j = 1, . . . , k. Logo,

∂

∂yj
=

n

∑
i=k+1

∂xi

∂yj

∂

∂xi
=

n

∑
i=k+1

aij
∂

∂xi
. (23)

Por outro lado, tomando-se (bij) = (aij)−1, temos

xj =
n

∑
l=k+1

ajlyl
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n

∑
j=k+1

bijxj =
n

∑
j=k+1

bij

n

∑
l=k+1

ajlyl

=
n

∑
j=k+1

n

∑
l=k+1

bijajlyl

=
n

∑
j=k+1

n

∑
l=k+1

(aij)−1ajlyl

=
n

∑
l=k+1

δilyl

= yi. (24)

De (23) e (24) obtemos que

n

∑
i=k+1

yi
∂

∂yi
=

n

∑
i=k+1

(
n

∑
j=k+1

bijxj

)(
n

∑
l=k+1

ali
∂

∂xl

)

=
n

∑
i=k+1

n

∑
j=k+1

n

∑
l=k+1

bijxjali
∂

∂xl

=
n

∑
i=k+1

n

∑
j=k+1

n

∑
l=k+1

xj(aij)−1ali
∂

∂xl

=
n

∑
j=k+1

n

∑
l=k+1

xj

(
n

∑
i=k+1

ali(aij)−1

)
∂

∂xl

=
n

∑
j=k+1

n

∑
l=k+1

xjδl j
∂

∂xl

=
n

∑
i=k+1

xi
∂

∂xi

Disto segue o requerido.

O próximo lema nos dá a expressão em cartas coordenadas de Fermi para a função

distância a uma subvariedade e caracteriza o normal para fora de uma subvariedade

em cartas coordenadas de Fermi.

Lema 2.65. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ M um ponto arbitrário tal que existe uma geodésica

minimizante γ de Γ a p, chegando em Γ ortogonalmente. Então

σ(p) = dΓ(p) e N|γ(s) = γ′(s).
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Demonstração. Primeiramente, tomemos γ(0) = q ∈ Γ. Tome b ∈ R tal que γ(b) = p. Pelo

Lema 2.61, existem cartas coordenadas de Fermi (x1, . . . , xn) centradas em p tal que

xi(γ(t)) = tδik+1. Consequentemente,

σ2(p) =
n

∑
i=k+1

x2
i (p) =

n

∑
i=k+1

x2
i (γ(b)) =

n

∑
i=k+1

b2δik+1 = b2 = d2
Γ(p), (25)

por (25) implicamos que σ(p) = dΓ(p). Por outro lado,

N|γ(s) =
n

∑
i=k+1

xi

σ
(γ(s))

∂

∂xi

∣∣∣∣
γ(s)

=
n

∑
i=k+1

xi(γ(s))
σ(γ(s))

∂

∂xi

∣∣∣∣
γ(s)

=
n

∑
i=k+1

sδik+1

dΓ(γ(s))
∂

∂xi

∣∣∣∣
γ(s)

=
n

∑
i=k+1

δik+1
∂

∂xi

∣∣∣∣
γ(s)

=
∂

∂xk+1

∣∣∣∣
γ(s)

= γ′(s).

Donde temos o requerido.

O próximo lema nos apresenta algumas propriedades do campo N e sua relação com

campos de Fermi tangenciais e normais. Além disso, relaciona todos esses campos com

a função distância σ.

Lema 2.66. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere X, Y ∈ X(Γ, p)⊥ e

A, B ∈ X(Γ, p)T. Então

∇N N = 0, (26)

|N| = 1, (27)

N(σ) = 1, (28)

A(σ) = 0, (29)
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[X, Y] = [A, B] = [X, A] = [N, A] = 0, (30)

[N, X] = − 1
σ

X +
1
σ

X(σ)N, (31)

[N, σX] = X(σ)N, (32)

∇N∇NZ + R(N, Z)N = 0, onde Z = A + σX. (33)

Demonstração. Primeiramente, como N|γ(s) = γ′(s), pelo Lema 2.65, temos que ∇N N =

∇γ′(s)γ
′(s) = 0 e |N| = |γ′(s)| = 1. Donde seguem os itens (26) e (27).

Para o item (28) notemos primeiramente que

N(σ2) =
n

∑
i=k+1

xi

σ

∂

∂xi
(σ2) = 2σ

n

∑
i=k+1

xi

σ

∂

∂xi
(σ) = 2σN(σ). (34)

De (34) temos que

N(σ) =
1

2σ
N(σ2)

=
1

2σ

n

∑
i=k+1

xi

σ

∂

∂xi
(σ2)

=
1

2σ

n

∑
i=k+1

xi

σ

∂

∂xi

(
n

∑
j=k+1

x2
j

)

=
1

2σ

n

∑
i=k+1

xi

σ

n

∑
j=k+1

∂

∂xi

(
x2

j

)
=

1
2σ

n

∑
i=k+1

n

∑
j=k+1

xi

σ

∂x2
j

∂xi

=
1

2σ

n

∑
i=k+1

n

∑
j=k+1

xi

σ
2xj

∂xj

∂xi

=
1

2σ

n

∑
i=k+1

n

∑
j=k+1

xi

σ
2xjδij

=
1
σ2

n

∑
i=k+1

n

∑
j=k+1

xixjδij

=
1
σ2

n

∑
i=k+1

x2
i = 1.
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Para o item (29) denotemos A ∈ X(Γ, p) por A = ∑k
i=1 αi

∂

∂xi
, onde αi ∈ R. Assim,

A(σ2) =
k

∑
i=1

αi
∂

∂xi
(σ2) = 2σ

k

∑
i=1

αi
∂

∂xi
(σ) = 2σA(σ). (35)

Por (35) temos que

A(σ) =
1

2σ
A(σ2) =

1
2σ

A

(
n

∑
j=k+1

x2
j

)

=
1

2σ

k

∑
i=1

αi
∂

∂xi

(
n

∑
j=k+1

x2
j

)

=
1

2σ

k

∑
i=1

n

∑
j=k+1

αi
∂

∂xi

(
x2

j

)
=

1
2σ

k

∑
i=1

n

∑
j=k+1

αi
∂x2

j

∂xi

=
1

2σ

k

∑
i=1

n

∑
j=k+1

αi2xj
∂xj

∂xi

=
1

2σ

k

∑
i=1

n

∑
j=k+1

αi2xjδij

= 0.

Para o item (30) denotemos X, Y ∈ X(Γ, p)⊥ por X = ∑n
i=k+1 αi

∂

∂xi
e Y = ∑n

i=k+1 βi
∂

∂xi
,

também denotaremos A, B ∈ X(Γ, p)T por A = ∑k
i=1 ai

∂

∂xi
e B = ∑k

i=1 bi
∂

∂xi
. Logo,

[X, Y] =

[
n

∑
i=k+1

αi
∂

∂xi
,

n

∑
j=k+1

β j
∂

∂xj

]
=

n

∑
i=k+1

n

∑
j=k+1

αiβ j

[
∂

∂xi
,

∂

∂xj

]
= 0, (36)

[A, B] =

[
k

∑
i=1

ai
∂

∂xi
,

k

∑
j=1

bj
∂

∂xj

]
=

k

∑
i=1

k

∑
j=1

aibj

[
∂

∂xi
,

∂

∂xj

]
= 0, (37)

[X, A] =

[
n

∑
i=k+1

αi
∂

∂xi
,

k

∑
j=1

aj
∂

∂xj

]
=

n

∑
i=k+1

k

∑
j=1

αiaj

[
∂

∂xi
,

∂

∂xj

]
= 0, (38)

[N, A]( f ) = N(A( f ))− A(N( f ))
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=
n

∑
i=k+1

xi

σ

∂

∂xi

(
k

∑
j=1

aj
∂ f
∂xj

)
−

k

∑
j=1

aj
∂

∂xj

(
n

∑
i=k+1

xi

σ

∂ f
∂xi

)

=
n

∑
i=k+1

xi

σ

k

∑
j=1

∂

∂xi

(
aj

∂ f
∂xj

)
−

k

∑
j=1

aj

n

∑
i=k+1

∂

∂xj

(
xi

σ

∂ f
∂xi

)

=
n

∑
i=k+1

xi

σ

k

∑
j=1

(
∂aj

∂xi

∂ f
∂xj

+ aj
∂2 f

∂xi∂xj

)
−

k

∑
j=1

aj

n

∑
i=k+1

(
∂

∂xj

(xi

σ

) ∂ f
∂xi

+
xi

σ

∂2 f
∂xj∂xi

)

=
n

∑
i=k+1

xi

σ

k

∑
j=1

aj
∂2 f

∂xi∂xj
−

k

∑
j=1

aj

n

∑
i=k+1

xi

σ

∂2 f
∂xj∂xi

−
k

∑
j=1

aj

n

∑
i=k+1

∂

∂xj

(xi

σ

) ∂ f
∂xi

=
n

∑
i=k+1

k

∑
j=1

aj
xi

σ

∂2 f
∂xi∂xj

−
k

∑
j=1

n

∑
i=k+1

aj
xi

σ

∂2 f
∂xi∂xj

−
k

∑
j=1

n

∑
i=k+1

aj
∂

∂xj

(xi

σ

) ∂ f
∂xi

= −
k

∑
j=1

n

∑
i=k+1

aj
∂

∂xj

(xi

σ

) ∂ f
∂xi

= −
k

∑
j=1

n

∑
i=k+1

aj

∂xi

∂xj
σ− xi

∂σ

∂xj

σ2
∂ f
∂xi

= −
k

∑
j=1

n

∑
i=k+1

aj
1
σ

∂xi

∂xj

∂ f
∂xi

+
k

∑
j=1

n

∑
i=k+1

aj
xi

σ

∂σ

∂xj

∂ f
∂xi

= −
k

∑
j=1

n

∑
i=k+1

aj
1
σ

δij
∂ f
∂xi

+
k

∑
j=1

n

∑
i=k+1

aj
xi

σ

1
2σ

∂σ2

∂xj

∂ f
∂xi

=
k

∑
j=1

n

∑
i=k+1

aj
xi

σ

1
2σ

∂

∂xj

(
n

∑
l=k+1

x2
l

)
∂ f
∂xi

=
k

∑
j=1

n

∑
i=k+1

n

∑
l=k+1

aj
xi

σ

1
2σ

∂

∂xj

(
x2

l

) ∂ f
∂xi

=
k

∑
j=1

n

∑
i=k+1

n

∑
l=k+1

aj
xi

σ

1
2σ

2xl
∂xl
∂xj

∂ f
∂xi

=
k

∑
j=1

n

∑
i=k+1

n

∑
l=k+1

aj
xixl
σ2 δl j

∂

∂xi
( f )

= 0( f ) (39)

Por (39) temos que [N, A] = 0 e disto segue-se, juntamente com (36), (37) e (38), que

[X, Y] = [A, B] = [X, A] = [N, A] = 0.
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Para o item (31) denotemos X ∈ X(Γ, p)⊥ por X = ∑n
i=k+1 αi

∂

∂xi
e notemos que

X(σ2) =
n

∑
i=k+1

αi
∂

∂xi
(σ2) = 2σ

n

∑
i=k+1

αi
∂

∂xi
(σ) = 2σX(σ). (40)

De (40) obtemos que

X(σ) =
1

2σ
X(σ2)

=
1

2σ

n

∑
i=k+1

αi
∂

∂xi

(
n

∑
l=k+1

x2
l

)

=
1

2σ

n

∑
i=k+1

n

∑
l=k+1

αi
∂

∂xi

(
x2

l

)
=

1
2σ

n

∑
i=k+1

n

∑
l=k+1

αi2xl
∂xl
∂xi

=
1
σ

n

∑
i=k+1

n

∑
l=k+1

αixlδli (41)

Assim, usando (41), temos que

[N, X]( f ) = N(X( f ))− X(N( f ))

=
n

∑
i=k+1

xi

σ

∂

∂xi

(
n

∑
j=k+1

αj
∂ f
∂xj

)
−

n

∑
j=k+1

αj
∂

∂xj

(
n

∑
i=k+1

xi

σ

∂ f
∂xi

)

=
n

∑
i=k+1

xi

σ

n

∑
j=k+1

∂

∂xi

(
αj

∂ f
∂xj

)
−

n

∑
j=k+1

αj

n

∑
i=k+1

∂

∂xj

(
xi

σ

∂ f
∂xi

)

=
n

∑
i=k+1

xi

σ

n

∑
j=k+1

(
∂αj

∂xi

∂ f
∂xj

+ αj
∂2 f

∂xi∂xj

)
−

n

∑
j=k+1

αj

n

∑
i=k+1

(
∂

∂xj

(xi

σ

) ∂ f
∂xi

+
xi

σ

∂2 f
∂xj∂xi

)

=
n

∑
i=k+1

xi

σ

n

∑
j=k+1

αj
∂2 f

∂xi∂xj
−

n

∑
j=k+1

αj

n

∑
i=k+1

xi

σ

∂2 f
∂xj∂xi

−
n

∑
j=k+1

αj

n

∑
i=k+1

∂

∂xj

(xi

σ

) ∂ f
∂xi

=
n

∑
i=k+1

n

∑
j=k+1

αj
xi

σ

∂2 f
∂xi∂xj

−
n

∑
j=k+1

n

∑
i=k+1

αj
xi

σ

∂2 f
∂xi∂xj

−
n

∑
j=k+1

n

∑
i=k+1

αj
∂

∂xj

(xi

σ

) ∂ f
∂xi

= −
n

∑
j=k+1

n

∑
i=k+1

αj
∂

∂xj

(xi

σ

) ∂ f
∂xi

= −
n

∑
j=k+1

n

∑
i=k+1

αj

∂xi

∂xj
σ− ∂σ

∂xj
xi

σ2
∂ f
∂xi
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= −
n

∑
j=k+1

n

∑
i=k+1

1
σ

αjδij
∂ f
∂xi

+
n

∑
j=k+1

n

∑
i=k+1

αj
xi

σ2
∂σ

∂xj

∂ f
∂xi

= −
n

∑
i=k+1

1
σ

αi
∂

∂xi
( f ) +

n

∑
j=k+1

n

∑
i=k+1

αj
xi

σ2
1

2σ

∂σ2

∂xj

∂ f
∂xi

= −
n

∑
i=k+1

1
σ

αi
∂

∂xi
( f ) +

n

∑
j=k+1

n

∑
i=k+1

αj
xi

σ2
1

2σ

∂

∂xj

(
n

∑
l=k+1

x2
l

)
∂ f
∂xi

= −
n

∑
i=k+1

1
σ

αi
∂

∂xi
( f ) +

n

∑
j=k+1

n

∑
i=k+1

n

∑
l=k+1

αj
xi

σ2
1

2σ

∂

∂xj

(
x2

l

) ∂ f
∂xi

= − 1
σ

n

∑
i=k+1

αi
∂

∂xi
( f ) +

n

∑
j=k+1

n

∑
i=k+1

n

∑
l=k+1

αj
xi

σ2
1

2σ
2xl

∂xl
∂xj

∂ f
∂xi

= − 1
σ

n

∑
i=k+1

αi
∂

∂xi
( f ) +

n

∑
j=k+1

n

∑
i=k+1

n

∑
l=k+1

αj
xi

σ2
1

2σ
2xlδl j

∂ f
∂xi

= − 1
σ

n

∑
i=k+1

αi
∂

∂xi
( f ) +

1
σ

1
σ

n

∑
j=k+1

n

∑
l=k+1

αjxlδl j

n

∑
i=k+1

xi

σ

∂ f
∂xi

= − 1
σ

X( f ) +
1
σ

X(σ)N( f )

=
(
− 1

σ
X +

1
σ

X(σ)N
)

( f ). (42)

Por (42) temos que [N, X] = − 1
σ

X +
1
σ

X(σ)N.

Para o item (32) usaremos os itens (28) e (31) como segue

[N, σX]( f ) = N(σ)X( f ) + σ[N, X]

= 1X( f ) + σ

(
− 1

σ
X( f ) +

1
σ

X(σ)N( f )
)

= X( f )− X( f ) + X(σ)N( f )

= X(σ)N( f ). (43)

Por (43) temos que [N, σX] = X(σ)N.

Para o item (33) note primeiramente que, pelo item (32), temos

[N, σX] = ∇N(σX)−∇σX N

∇N[N, σX] = ∇N∇N(σX)−∇N∇σX N

∇N∇N(σX) = ∇N[N, σX] +∇N∇σX N

= ∇N(X(σ)N) +∇N∇σX N. (44)
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Por outro lado, temos também que, pelo item (26),

R(N, σX)N = ∇σX∇N N −∇N∇σX N +∇[N,σX]N

∇N∇σX N = −R(N, σX)N +∇[N,σX]N. (45)

Juntando (44) e (45) e usando os itens (26) e (32) obtemos que

∇N∇N(σX) = ∇N(X(σ)N)− R(N, σX)N +∇[N,σX]N

= ∇N(X(σ)N)− R(N, σX)N +∇X(σ)N N

= N(X(σ))N + X(σ)∇N N − R(N, σX)N − X(σ) +∇N N

= N(X(σ))N − R(N, σX)N. (46)

Por outro lado, usando o item (28), obtemos que

[N, X](σ)N = (N(X(σ))− X(N(σ))) N

= (N(X(σ))− X(1)) N

= N(X(σ))N. (47)

Juntando (46) e (47) e usando os itens (28) e (31) obtemos que

∇N∇N(σX) = [N, X](σ)N − R(N, σX)N

=
(
− 1

σ
X +

1
σ

X(σ)N
)

(σ)N − R(N, σX)N

= − 1
σ

X(σ)N +
1
σ

X(σ)N(σ)N − R(N, σX)N

= − 1
σ

X(σ)N +
1
σ

X(σ)N − R(N, σX)N

= −R(N, σX)N. (48)

Além disso, temos pelo item (30) que

0 = [N, A] = ∇N A−∇AN

∇N∇N A = ∇N∇AN. (49)

Por outro lado, usando os itens (26) e (30), temos que

R(N, A)N = ∇A∇N N −∇N∇AN +∇[N,A]N

= −∇N∇AN. (50)
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Juntando (49) e (50) obtemos que

∇N∇N A = −R(N, A)N. (51)

Por fim, usando (48) e (51), temos

∇N∇NZ = ∇N∇N(A− σX)

= ∇N∇N A +∇N∇N(σX)

= −R(N, A)N − R(N, σX)N

= −R(N, A + σX)N

= −R(N, Z)N

∇N∇NZ + R(N, Z)N = 0.

Donde temos o requerido.

2.6 lema de gauss generalizado

Nesta seção apresentamos o lema de Gauss generalizado que mostra que o normal

para fora de uma subvariedade é dado pelo gradiente da função distância. Mostramos

também que o lema de Gauss generalizado implica o lema de Gauss.

Lema 2.67 (de Gauss generalizado). Sejam Γ ⊂ M uma subvariedade mergulhada k-

dimensional de uma variedade Riemanniana n-dimensional (M, g) e p ∈ Γ. Então temos

que N = grad(σ).

Demonstração. Sejam X ∈ X(Γ, p)⊥, A ∈ X(Γ, p)T e tome Z = A + σX. Denotaremos

X = ∑n
i=k+1 αi

∂

∂xi
e A = ∑k

i=1 ai
∂

∂xi
. Note que

N2⟨Z, N⟩ = N(N⟨Z, N⟩)

= N⟨∇NZ, N⟩ + N⟨Z,∇N N⟩

= ⟨∇N∇NZ, N⟩ + ⟨∇NZ,∇N N⟩

= ⟨−R(N, Z)N, N⟩

= 0. (52)
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Além disso,

N2⟨Z, grad(σ)⟩ = N2Z(σ)

= N2(A + σX)(σ)

= N(NA + N(σX))(σ)

= N(NA− AN + AN + N(σX)− (σX)N + (σX)N)(σ)

= N([N, A] + AN + [N, σX] + (σX)N)(σ)

= N(AN + X(σ)N + (σX)N)(σ)

= N(A(N(σ)) + X(σ)N(σ) + (σX)(N(σ)))

= N(A(1)) + N(X(σ)) + N((σX)(1))

= N(X(σ))

=
n

∑
j=k+1

xj

σ

∂

∂xj

(
n

∑
i=k+1

1
σ

αixi

)

=
n

∑
j=k+1

n

∑
i=k+1

xj

σ

∂

∂xj

(
1
σ

αixi

)

=
n

∑
j=k+1

n

∑
i=k+1

xj

σ

(
∂

∂xj

(
1
σ

)
αixi +

1
σ

αi
∂xi

∂xj

)

=
n

∑
j=k+1

n

∑
i=k+1

xj

σ

(
n

∑
l=k+1
− 1

σ3 xlδl jαixi +
1
σ

αiδij

)

= −
n

∑
j=k+1

n

∑
i=k+1

n

∑
l=k+1

αi

σ4 xjxlxiδl j +
n

∑
j=k+1

n

∑
i=k+1

αi

σ2 xjδij

= −
n

∑
j=k+1

n

∑
i=k+1

αi

σ4 x2
j xi +

n

∑
i=k+1

αi

σ2 xi

= −
n

∑
j=k+1

x2
j

σ2

n

∑
i=k+1

αi

σ2 xi +
n

∑
i=k+1

αi

σ2 xi

= −
n

∑
i=k+1

αi

σ2 xi +
n

∑
i=k+1

αi

σ2 xi = 0. (53)

De (52) e (53) temos que ao longo de uma geodésica qualquer γ p.p.c.a. normal a Γ as

funções t 7→ ⟨Z, N⟩(γ(t)) e t 7→ ⟨Z, grad(σ)⟩(γ(t)) são ambas lineares em t.
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Para provar que são a mesma função basta provar que o limite delas e de suas

derivadas coincidem no 0. De fato, pelo Lema 2.61 podemos tomar cartas coordenadas

de Fermi tais que (xi ◦ γ)(t) = tδik+1, para 1 ≤ i ≤ n. Logo

lim
t→0
⟨Z, N⟩(γ(t)) = lim

t→0
⟨A + σX, N⟩(γ(t))

= lim
t→0
⟨A(γ(t)), N(γ(t))⟩ + lim

t→0
σ(γ(t))⟨X(γ(t)), N(γ(t))⟩

= lim
t→0
⟨0, N(γ(t))⟩ + lim

t→0
σ(γ(t))

〈
n

∑
l=k+1

αl
∂

∂xl
(γ(t)),

n

∑
j=k+1

xj(γ(t))
σ(γ(t))

∂

∂xj
(γ(t))

〉

= lim
t→0

t

〈
n

∑
l=k+1

αl
∂

∂xl
(γ(t)),

n

∑
j=k+1

tδjk+1

t
∂

∂xj
(γ(t))

〉

= lim
t→0

t

〈
n

∑
l=k+1

αl
∂

∂xl
(γ(t)),

∂

∂xk+1
(γ(t))

〉
= lim

t→0
tαk+1

= 0. (54)

Além disso,

lim
t→0
⟨Z, grad(σ)⟩(γ(t)) = lim

t→0
Z(σ)(γ(t))

= lim
t→0

A(σ)(γ(t)) + lim
t→0

σX(σ)(γ(t))

= lim
t→0

σX(σ)(γ(t))

= lim
t→0

n

∑
i=k+1

αixi(γ(t))

= lim
t→0

n

∑
i=k+1

αitδik+1

= lim
t→0

tαk+1

= 0. (55)

Agora, para as derivadas, temos que

lim
t→0

N⟨Z, N⟩(γ(t)) = lim
t→0

(⟨∇NZ, N⟩ + ⟨Z,∇N N⟩) (γ(t))

= lim
t→0
⟨∇N A +∇N(σX), N⟩(γ(t))

= lim
t→0

(⟨∇N A, N⟩ + ⟨N(σ)X + σ∇NX, N⟩) (γ(t))
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= lim
t→0

(
1
2

A|N|2 + ⟨X, N ⟩ + σN⟨X, N⟩
)

(γ(t))

= lim
t→0

1
2

A(γ(t)) + lim
t→0
⟨X, N⟩(γ(t)) + lim

t→0
σN(⟨X, N⟩(γ(t)))

= lim
t→0

αk+1 + lim
t→0

σN(αk+1)

= αk+1. (56)

Além disso,

lim
t→0

N⟨Z, grad(σ)⟩(γ(t)) = lim
t→0

N(Z(σ))(γ(t))

= lim
t→0

N(A + σX)(σ)(γ(t))

= lim
t→0

(NA− AN + AN + N(σ)X + σNX)(σ)(γ(t))

= lim
t→0

([N, A] + AN + X + σNX)(σ)(γ(t))

= lim
t→0

(A(N(σ)) + X(σ) + σN(X(σ)))(γ(t))

= lim
t→0

X(σ)(γ(t)) + lim
t→0

σ(γ(t))N(X(σ)(γ(t)))

= lim
t→0

1
σ(γ(t))

n

∑
i=k+1

αixi(γ(t)) + lim
t→0

σ(γ(t))N

(
1

σ(γ(t))

n

∑
i=k+1

αixi(γ(t))

)

= lim
t→0

1
t

n

∑
i=k+1

αitδik+1 + lim
t→0

tN

(
1
t

n

∑
i=k+1

αitδik+1

)
= lim

t→0
αk+1 + lim

t→0
tN (αk+1)

= αk+1. (57)

Por (54), (55), (56) e (57) temos que as funções t 7→ ⟨Z, N⟩(γ(t)) e t 7→ ⟨Z, grad(σ)⟩(γ(t))

são iguais. Como γ é arbitrário, temos que

⟨Z, N⟩ = ⟨Z, grad(σ)⟩.

Além disso, para q ∈ M numa vizinhança de Γ todo vetor em TqM é da forma Z =

A + σX, A ∈ X(Γ, p)T e X ∈ X(Γ, p)⊥. Então concluímos que N = grad(σ), como

requerido.

Corolário 2.68. O Lema de Gauss generalizado implica o Lema de Gauss.

Demonstração. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto arbitrário e

{e1, . . . , en} uma base ortonormal de TpM ∼= T0(TpM). Note que as cartas coordenadas
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normais em TpM, associadas a base {e1, . . . , en}, são a base dual a {e1, . . . , en}. Assim,

podemos considerar N o vetor normal definido da Definição 2.63 e s uma função

distância, também da Definição 2.63, para TpM. Considere também N o vetor normal

da Definição 2.63 e σ é a função distância, também da Definição 2.63, para M.

Note que por (28) do Lema 2.66 temos que N(σ) = 1 e N(s) = 1. Pelo Lema 2.67 temos

que

|N| = ⟨N, N⟩ = ⟨N, grad(σ)⟩ = N(σ) = 1 (58)

e

|N| = ⟨N, N⟩ = ⟨N, grad(s)⟩ = N(s) = 1. (59)

Mas, pelo Lema 2.65 sabemos que N é o vetor tangente as geodésicas radiais em TpM e

N é o vetor tangente as geodésicas radiais em M. Portanto, por (58) e (59) temos que

expp preserva o comprimento de vetores tangentes às geodésicas radiais.

Da interpretação usual do operador gradiente temos que grad(σ) é perpendicular

a cada uma das hipersuperfícies σ = constante. O mesmo vale para grad(s) em TpM.

Em outras palavras, os vetores tangentes às geodésicas radiais são perpendiculares as

hipersuperfícies σ = constante em M e s = constante em TpM. Portanto, temos que expp

também preserva a ortogonalidade entre vetores tangentes as geodésicas radiais e os

vetores tangentes as esferas geodésicas em TpM e M.

2.7 campos de jacobi e o conjugated-locus

Nesta seção iremos definir os campos de Jacobi, apresentar algumas propriedades e

relacioná-los com os campos de Fermi. Além disso, construiremos o conjugated-locus,

que terá grande importância posteriormente.

Definição 2.69. Sejam (M, g) uma variedade Riemanniana e γ : [0, a] → M uma geodésica

de M. Um campo de vetores J ao longo de γ é um campo de Jacobi se satisfaz a equação de

Jacobi:
D2 J
dt2 + R(γ′(t), J(t))γ′(t) = 0, (60)

pata todo t ∈ [0, a].
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Observação 2.70. Sejam (M, g) uma variedade Riemanniana n-dimensional, γ : [0, a]→ M

uma geodésica de M e J um campo de Jacobi. Afirmamos que o campo de Jacobi J é determinado

pelas condições iniciais J(0) e
DJ
dt

(0).

De fato, seja {E1(t), . . . , En(t)} campos paralelos e ortonormais ao longo de γ. Considere

J(t) =
n

∑
i=1

fi(t)Ei(t) e aij = ⟨R(γ′(t), Ei(t))γ′(t), Ej(t)⟩,

com i, j = 1, . . . , n. Então
D2 J
dt2 =

n

∑
i=1

f ′′i (t)Ei(t),

e

R(γ′, J)γ′ =
n

∑
j=1
⟨R(γ′, J)γ′, Ej⟩Ej =

n

∑
j=1

n

∑
i=1

fi⟨R(γ′, Ei)γ′, Ej⟩Ej =
n

∑
j=1

n

∑
i=1

fiaijEj.

Portanto, (60) é equivalente ao sistema

f ′′j (t) +
n

∑
i=1

aij(t) fi(t) = 0,

j = 1, . . . , n. Que é um sistema linear de segunda ordem. Assim, da teoria das EDO’s, dadas as

condições iniciais J(0) e
DJ
dt

(0), existe uma solução de classe C∞ do sistema, definida em [0, a].

Quando demostramos o lema de Gauss definimos as superfícies parametrizadas

e, sem dar nomes, construímos um campo de Jacobi ao longo de uma geodésica. A

próxima proposição mostra que essa é, essencialmente, a única maneira de construirmos

campos de Jacobi ao longo de uma geodésica.

Proposição 2.71. Sejam (M, g) uma variedade Riemanniana, γ : [0, a]→ M uma geodésica

normalizada em M e J um campo de Jacobi ao longo de γ com J(0) = 0. Faça
DJ
dt

(0) = w e

γ′(0) = v. Considere w ∈ Tav(Tγ(0)M) e construa uma curva v(s) em Tγ(0)M com v(0) = av e

v′(0) = w. Faça f (t, s) = expptv(s), p = γ(0), e defina um campo de Jacobi J por J(t) =
∂ f
∂s

(t, 0).

Então J = J em [0, a].

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.4, p. 126].

Corolário 2.72. Sejam (M, g) uma variedade Riemanniana e γ : [0, a] → M uma geodésica.

Então um campo de Jacobi J ao longo de γ com J(0) = 0 é dado por

J(t) = (dexpp)tγ′(0)(tJ′(0)), t ∈ [0, a].
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Demonstração. Segue diretamente da Proposição 2.71.

Com as principais propriedades dos campos de Jacobi estudadas podemos relacioná-

los com os campos de Fermi estudados anteriormente.

Proposição 2.73. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere γ uma geodésica

normal a Γ em p e suponha que tenhamos X ∈ X(Γ, p)⊥ e A ∈ X(Γ, p)T. Então as restrições a γ

σX|γ e A|γ

são campos de Jacobi.

Demonstração. Segue diretamente de (48), notando-se que N|γ(s) = γ′(s), pelo Lema 2.65,

que

(σX|γ)′′ = ∇γ′∇γ′(σX|γ)

= ∇N|γ∇N|γ(σX|γ)

= (∇N∇N(σX))|γ
= (−R(N, σX)N)|γ
= −R(γ′, σX)γ′.

Donde segue-se que σX|γ é um campo de Jacobi, como requerido. A prova de que A|γ
é um campo de Jacobi é análoga usando-se (51).

Proposição 2.74. Sejam Γ ⊂ M uma subvariedade mergulhada k-dimensional de uma variedade

Riemanniana n-dimensional (M, g) e p ∈ Γ um ponto arbitrário. Considere (x1, . . . , xn) uma

carta coordenada de Fermi centrada em p. Então, ao longo de qualquer geodésica normal, o

campo de vetores

σ
∂

∂xi

são campos de Jacobi para k + 1 ≤ i ≤ n.

Demonstração. Basta considerarmos na Proposição 2.73 os campos X =
∂

∂xi
, k + 1 ≤ i ≤ n

e o resultado segue.

Assim, vamos definir o conjugated-locus e depois mostrarmos, através da próxima

proposição, que um ponto é conjugado a outro ao longo de uma geodésica se, e somente

se, for um ponto crítico da aplicação exponencial.
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Definição 2.75. Seja (M, g) uma variedade Riemanniana e γ : [0, a]→ M uma geodésica de

M. O ponto γ(t0) é conjugado de γ(0) ao longo de γ, t0 ∈ [0, a[, se existe um campo de Jacobi

J ao longo de γ, não identicamente nulo, com J(0) = 0 = J(t0). O número máximo de tais campos

linearmente independentes é a multiplicidade do ponto conjugado γ(t0).

Note que se γ(t0) é conjugado de γ(0), então γ(0) é conjugado de γ(t0).

Definição 2.76. Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto de M. O

conjunto dos (primeiros) pontos conjugados de p, para todas as geodésicas que saem de p, é

chamado de conjugated-locus de p e é indicado por C(p).

Proposição 2.77. Seja (M, g) uma variedade Riemanniana e γ : [0, a] → M uma geodésica

de M tal que γ(0) = p. O ponto q = γ(t0), t0 ∈ [0, a[, é conjugado de p ao longo de γ se, e

somente se, v0 = t0γ′(0) é um ponto crítico de expp. Além disso, a multiplicidade de q como

ponto conjugado de p é igual a dimensão do núcleo da aplicação linear (dexpp)v0 .

Demonstração. A demonstração pode ser vista em [dC15, Proposição 3.5, p. 130].

2.8 a segunda forma fundamental

Considere (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n, e f :

N → M uma imersão, onde N é uma subvariedade n-dimensional. Para cada p ∈ N, o

produto interno em TpM decompõe TpM na soma direta

TpM = TpN ⊕ (TpN)⊥,

onde (TpN)⊥ é o complemento ortogonal de TpN em TpM. Assim, para v ∈ TpM,

podemos escrever

v = vT + v⊥,

onde vT ∈ TpN e v⊥ ∈ (TpN)⊥.

Note que já usamos essa decomposição anteriormente nas cartas coordenadas de

Fermi e em campos de Fermi.

Definição 2.78. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional e p ∈ N um ponto de N.

Para v ∈ TpM denominamos vT ∈ TpN de componente tangencial de v e v⊥ ∈ (TpN)⊥ de

componente normal de v.
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Note que a decomposição proposta acima é diferenciável no sentido que as aplicações

de TM em TM dadas por

(p, v) 7→ (p, vT) e (p, v) 7→ (p, v⊥)

são diferenciáveis.

Definição 2.79. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n, e

f : N → M uma imersão, onde N é uma subvariedade n-dimensional. Considere ∇ a conexão

Riemanniana de M e, para X, Y campos locais de N, X, Y as extensões locais a M. Assim,

definimos a conexão de N por

∇XY = (∇XY)T .

Note que da Definição 2.79 temos a conexão Riemanniana de N relativa à métrica

induzida de M.

Com a próxima proposição começaremos a dar estrutura para podermos definir a se-

gunda forma fundamental, o operador forma e algumas curvaturas para subvariedades.

Proposição 2.80. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, e U ⊂ N um subconjunto

aberto de N. Considere X, Y ∈ X(U), a aplicação B : X(U)× X(U) → X(U)⊥, onde X(U)⊥

são os campos diferenciáveis em U de vetores normais a f (U) ≈ U, dada por

B(X, Y) = ∇XY−∇XY.

está bem definida e, além disso, é bilinear e simétrica.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.1, p. 140 -

141].

Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n, f : N → M

uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N um ponto de N e

η ∈ (TpN)⊥ um vetor normal a N. A aplicação Hη : TpN × TpN → R dada por

Hη(x, y) = ⟨B(x, y), η⟩,

onde x, y ∈ TpN, é, pela Proposição 2.80, uma forma bilinear simétrica.

Definição 2.81. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N um ponto de N e
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η ∈ (TpN)⊥ um vetor normal a N. Definimos a segunda forma fundamental de f em p

segundo o vetor normal η como a forma quadrática I Iη em TpN dada por

I Iη(x) = Hη(x, x).

Definição 2.82. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N um ponto de N e

η ∈ (TpN)⊥ um vetor normal a N. Definimo o operador forma de f em p segundo o vetor

normal η como a aplicação linear auto-adjunta Sη : TN → TpN dada por

⟨−Sη(x), y⟩ = Hη(x, y) = ⟨B(x, y), η⟩.

Com a segunda forma fundamental e o operador forma de uma subvariedade defini-

dos, podemos estudar algumas propriedades de ambos em alguns casos particulares.

Comecemos com a seguinte proposição.

Proposição 2.83. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = m + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N um ponto de N,

x ∈ TpN e η ∈ (TpN)⊥ um vetor normal a N. Considere N uma extensão local de η normal a

N. Então

Sη(x) = ∇xη.

Demonstração. Sejam y ∈ TpN arbitrário e X, Y as extensões locais de x e y, respectiva-

mente, e tangentes a N. Então ⟨N, Y⟩ = 0 e, portanto,

⟨Sη(x), y⟩ = ⟨−B(x, y)(p), η⟩ = ⟨−∇XY +∇xy, N⟩(p) = ⟨−∇XY, N⟩(p) = ⟨Y,∇X N⟩(p)

= ⟨∇xη, y⟩.

Um caso particular de imersões que será de grande interesse no decorrer dessa

dissertação é o caso de codimensão 1, isto é, quando a imersão é uma hipersuperfície.

Assim, considere (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 + n,

e f : N → M uma imersão, onde N é uma subvariedade n-dimensional. Seja p ∈ N e

η ∈ (TpN)⊥, |η| = 1. Como Sη : TpN → TpN é simétrica, existe uma base ortonormal

de vetores próprios {e1, . . . , en} de TpN com valores próprios reais λ1, . . . , λn, isto é,

Sη(ei) = λiei, 1 ≤ i ≤ n. Além disso, se N e M são ambas orientáveis e estão orientadas

então o vetor η fica univocamente determinado se exigirmos que sendo {e1, . . . , en}
uma base de orientação para N, {e1, . . . , en, η} seja uma base na orientação de M.
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Com isso podemos definir as curvaturas de uma hipersuperfície que serão estudadas

posteriormente.

Definição 2.84. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N e η ∈ (TpN)⊥,

|η| = 1. Denominamos os vetores próprios {e1, . . . , en} de Sη : TpN → TpN como as direções

principais de N em p e os valores próprios reais λ1, . . . , λn associados aos vetores próprios

{e1, . . . , en} de Sη : TpN → TpN como as curvaturas principais de N em p.

Definição 2.85. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N e η ∈ (TpN)⊥,

|η| = 1. Considere κ1(p), . . . , κn(p) as curvaturas principais de N em p. Definimos a curvatura

de Gauss-Kronecker de N em p por

GK(p) = det(Sη) = Πn
i=1κi(p).

Definição 2.86. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N e η ∈ (TpN)⊥,

|η| = 1. Considere κ1(p), . . . , κn(p) as curvaturas principais de N em p. Definimos a curvatura

média normalizada de N em p por

H(p) =
1
n

tr(Sη) =
1
n

(λ1 + · · · + λn).

Definição 2.87. Sejam (M, g) uma variedade Riemanniana k-dimensional, onde k = 1 + n,

f : N → M uma imersão, onde N é uma subvariedade n-dimensional, p ∈ N e η ∈ (TpN)⊥,

|η| = 1. Considere GK(p) a curvatura de Gauss-Kronecker de N em p. Definimos a curvatura

total de Gauss-Kronecker de N por

G(N) =
∫

N
GKdσ.

2.9 variedades completas e o teorema de
hadamard

Nesta seção vamos estudar algumas propriedades globais de variedades Riemannianas

e vamos definir as variedades de Cartan-Hadamard, que é um dos espaços ambiente
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no qual estudaremos os resultados obtidos por Mohammad Ghomi e Joel Spruck no

artigo “Total curvature and the isoperimetric inequality in Cartan-Hadamard manifolds”

[GS21].

Definição 2.88. Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto de M. Dizemos

que M é completa se a aplicação exponencial, expp, está definida para todo v ∈ TpM, em outras

palavras, se as geodésicas γ(t) que partem de p estão definidas para todo t ∈ R.

O teorema de Hopf-Rinow vai dar-nos algumas equivalências para o conceito de

completeza.

Teorema 2.89 (Hopf e Rinow). Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto.

As seguintes afirmações são equivalentes:

1. M é completa.

2. expp está definida em todo TpM.

3. Os limitados e fechados de M são compactos.

4. M é completa como espaço métrico.

5. Existe uma sucessão de compactos Kn ⊂ M, Kn ⊂ int(Kn+1) e ∪nKn = M, tais que se

qn ̸∈ Kn então d(p, qn)→ ∞.

Além disso, cada uma das afirmações acima implica que

• Para todo q ∈ M existe uma geodésica γligando p a q com l(γ) = d(p, q).

Demonstração. A demonstração pode ser vista em [dC15, Teorema 2.8, p. 162 - 165].

Assim, como uma aplicação do teorema de Hopf-Rinow temos o teorema de Hada-

mard.

Teorema 2.90 (Hadamard). Seja (M, g) uma variedade Riemanniana n-dimensional, completa,

simplesmente conexa e com curvatura seccional K(p, σ) ≤ 0, para todo p ∈ M e todo σ ⊂ TpM.

Então M é difeomorfa a Rn; mais precisamente, expp : TpM→ M é um difeomorfismo.

Demonstração. A demonstração pode ser vista em [dC15, Teorema 3.1, p. 165 - 168].

Por causa do teorema de Hadamard temos a seguinte definição para variedades de

Cartan-Hadamard.

Definição 2.91. Seja (M, g) uma variedade Riemanniana completa, simplesmente conexa e

com curvatura seccional K(p, σ) ≤ 0, para todo p ∈ M e todo σ ⊂ TpM. Chamamos M de

variedade de Cartan-Hadamard.
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2.10 teorema de cartan sobre a determina-
ção da métrica

Nesta seção apresentaremos o teorema de Cartan sobre a determinação da métrica, o

qual será utilizado algumas vezes ao longo da dissertação. Para isso consideremos M e

M duas variedades Riemannianas n-dimensionais e considere p ∈ M e p ∈ M. Escolha

uma isometria linear i : TpM→ TpM. Seja V ⊂ M uma vizinhança normal de p tal que

expp está definida em i ◦ exp−1
p (V). Defina uma aplicação f : V → M por

f (q) = expp ◦ i ◦ exp−1
p (q), q ∈ V.

Para todo q ∈ V existe uma geodésica normalizada γ : [0, t]→ M com γ(0) = p, γ(t) = q.

Indicaremos por Pt o transporte paralelo ao longo de γ de γ(0) a γ(t). Defina ainda

ϕt : TqM→ Tf (q)M por

ϕt(v) = Pt ◦ i ◦ P−1
t (v), v ∈ TqM,

onde Pt é o transporte paralelo ao longo da geodésica normalizada γ : [0, t]→ M dada

por γ(0) = p, γ′(0) = i(γ′(0)). Finalmente, indicaremos por R e R as curvaturas de M e

M, respectivamente.

Teorema 2.92. Com as notações acima, se para todo q ∈ V e todo x, y, u, v ∈ TqM tem-se

⟨R(x, y)u, v⟩ = ⟨R(ϕt(x), ϕt(y))ϕt(u), ϕt(v)⟩,

então f : V → f (V) ⊂ M é uma isometria local e d fp = i.

Demonstração. A demonstração pode ser vista em [dC15, Teorema 2.1, p. 174 - 176].

2.11 o cut locus

As propriedades do cut locus serão melhor estudadas posteriormente, portanto aborda-

remos apenas de uma forma superficial inicialmente, pois o objetivo final é relacionar

os pontos críticos da função distância com o cut locus.

Definição 2.93. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto de M e γ :

[0, ∞[→ M uma geodésica normalizada com γ(0) = p. Se o conjunto dos números t > 0 para
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os quais d(γ(0), γ(t)) = t é da forma [0, t0] então o definimos γ(t0) como o ponto de corte de

p ao longo de γ. Além disso, o cut locus de p cut(p) é o conjunto de todos os pontos de corte

de p ao longo de todas as geodésicas que partem de p.

A próxima proposição relaciona o cut locus com o conjugated-locus.

Proposição 2.94. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto de M e

γ : [0, ∞[→ M uma geodésica normalizada com γ(0) = p. Suponha que γ(t0) é um ponto de

corte de p ao longo de γ. Então

1. ou γ(t0) é o primeiro ponto conjugado de γ(0) ao longo de γ,

2. ou existe uma geodésica σ ̸= γ de p a γ(t0) tal que l(σ) = l(γ).

Reciprocamente, se (1) ou (2) se verifica, então existe t em [0, t0[ tal que γ(t) é o ponto de corte

de p ao longo de γ.

Demonstração. A demonstração pode ser vista em [dC15, Proposição 2.2, p. 296].

Observação 2.95. Uma variedade Riemanniana compacta M para a qual o cut locus cut(p) de

todo p ∈ M se reduz a um único ponto é chamada de variedade wiedersehen. Existe um

resultado devido a L. Green [Gre63] que as superfícies wiedersehen são isométricas às esferas.

Este resultado foi generalizado por M. Berger e J. Kazdan [Bes78] para o caso em que a dimensão

de M é par, e por C.T. Yang [Yan80] para o caso em que a dimensão de M é ímpar.

O próximo corolário nos dá um tipo de simetria para os cut-points ao longo de uma

geodésica.

Corolário 2.96. Sejam (M, g) uma variedade Riemanniana, p, q ∈ M pontos de M e γ :

[0, ∞[→ M uma geodésica em M tal que γ(0) = p e γ(a) = q. Se q ∈ M é um ponto de corte de

p ao longo de γ então p é um ponto de corte de q ao longo de −γ; em particular, q ∈ cut(p) se,

e somente se, p ∈ cut(q).

Demonstração. Segue diretamente da Proposição 2.94. De fato, pois suponha que p é o

ponto de corte de q ao longo de uma geodésica γ, então, pela Proposição 2.94, ou q é

conjugado a p, ou existe uma geodésica σ ̸= γ, ligando p a q, tal que l(σ) = l(γ) = d(p, q).

Em ambos os casos, o ponto de corte de q ao longo de −γ não ocorre depois de p.

Como l(−γ) = d(p, q), concluímos que p é ponto de corte de q ao longo de −γ.
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Corolário 2.97. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto de M e γ :

[0, ∞[→ M uma geodésica normalizada com γ(0) = p. Suponha que γ(t0) ∈ M \ cut(p). Então

existe uma única geodésica minimizante ligando p a q.

Demonstração. Segue diretamente da Proposição 2.94.

O Corolário 2.97 mostra que expp é injetiva em uma bola aberta Br(p) centrada em p

se, e somente se, o raio r é menor ou igual a distância de p a cut(p).

Definição 2.98. Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto de M. Definimos

o raio de injetividade de M como sendo

i(M) = inf
p∈M

d(p, cut(p)).

O Corolário 2.97 mostra também que M \ cut(p) é homeomorfo a uma bola aberta

do espaço euclideano (via coordenadas normais). Em certo sentido, isto indica que a

topologia de M está contida no seu cut locus.

2.12 suavizadores

Nesta seção vamos demonstrar alguns resultados sobre os suavizadores. Como estes

resultados são locais podemos considerar M = Rn com a métrica canônica. Nosso

objetivo agora é definir uma sequência generalizada de métricas Riemannianas suaves

que se aproximam de g.

Assim, considere f ∈ C∞(Rn) com suporte compacto, isto é, supp( f ) = {x ∈ Rn : f (x) ̸= 0} ⊂
Rn é compacto e ∫

Rn
f (x)dx = 1.

Para ε > 0, defina

f ε(x) =
1
εn f

(x
ε

)
.

A função f ε é chamada de suavizador padrão. Observe que supp ( f ε) ⊂ Rn também é

compacto, pois supp( f ) é compacto e f ε e f diferem somente por uma homotetia e∫
Rn

f ε(x)dx =
1
εn

∫
Rn

f
(x

ε

)
dx =

1
εn

∫
Rn

f (y)εndy =
∫

Rn
f (y)dy = 1
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Definimos agora, para uma função h : Rn → R contínua, o produto de convolução

hε : Rn → R, por

hε(x) = (h ∗ f ε) (x) =
∫

Rn
h(y) f ε(x− y)dy.

Note que o produto de convolução definido acima está bem definido pois h(y) f ε(x− y)

é contínua e não nula somente num conjunto compacto.

Com a definição de produto de convolução tomaremos a sequência generalizada de

métricas Riemannianas por (gε). A seguir provaremos o desejado, isto é, que (gε) é uma

sequência generalizada de métricas Riemannianas suaves que se aproximam de g.

Lema 2.99. Seja (M, g) uma variedade Riemanniana com métrica de classe C1,1. Considere a

sequência generalizada (gε), onde gε é dada pelo produto de convolução de g. Afirmamos que

1. gε ∈ C∞(Rn).

2. gε → g uniformemente em todo V ⊂ Rn compacto.

Demonstração. (1): Afirmamos que para x, v ∈ Rn arbitrários com |v| = 1 temos que

∂gε

∂v
(x) =

(
g ∗ ∂ f ε

∂v

)
(x) =

∫
Rn

g(y)
∂ f ε

∂v
(x− y)dy. (61)

Como f ε ∈ C∞(Rn) e g ∈ C1,1 segue-se de (61) que gε ∈ C∞(Rn) como requerido.

Agora, vamos provar que para x, v ∈ Rn arbitrários com |v| = 1 vale (61).

De fato,

lim
h→0

gε(x + hv)− gε(x)
h

= lim
h→0

1
h
(gε(x + hv)− gε(x))

= lim
h→0

1
h

(∫
Rn

g(y) f ε(x + hv− y)dy−
∫

Rn
g(y) f ε(x− y)dy

)
= lim

h→0

1
h

(∫
Rn

g(y)( f ε(x + hv− y)− f ε(x− y))dy
)

= lim
h→0

1
h

(∫
Rn

g(y)
(

1
εn f

(
x + hv− y

ε

)
− 1

εn f
(

x− y
ε

))
dy
)

=
1
εn

(
lim
h→0

∫
Rn

g(y)
1
h

(
f
(

x + hv− y
ε

)
− f

(
x− y

ε

))
dy
)

=
1
εn

lim
h→0

∫
Rn

g(y)
f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

dy

 (62)



2.12 suavizadores 53

Considere ζh(x) = g(y)
f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

e ζ(x) = g(y)
1
ε

∂ f
∂v

(
x− y

ε

)
. Afirma-

mos que ζh → ζ, quando h→ 0, e |ζh(x)| ≤ γ(x), onde γ : Rn → R é integrável.

De fato,

lim
h→0

ζh(x) = lim
h→0

g(y)
f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

= g(y) lim
h→0

f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

= g(y) lim
h→0

f
(

x− y
ε

+
h
ε

v
)
− f

(
x− y

ε

)
h

= g(y) lim
h→0

1
ε

f
(

x− y
ε

+
h
ε

v
)
− f

(
x− y

ε

)
h
ε

= g(y)
1
ε

lim
k→0

f
(

x− y
ε

+ kv
)
− f

(
x− y

ε

)
k

= g(y)
1
ε

∂ f
∂v

(
x− y

ε

)
= ζ(x)

Considere ψ(x) = f
(

x− y
ε

)
. Como f ∈ C∞(Rn) temos que D f (x) é contínua e, pelo

Teorema de Weirstrass, limitada em um conjunto compacto, isto é, para t ∈ [0, h] existe

M ∈ Rn tal que
∣∣∣∣D f

(
x + tv− y

ε

)
· v
∣∣∣∣ ≤ M, logo

|ψ(x + hv)− ψ(x)| =
∣∣∣∣∫ h

0

d
dt

ψ(x + tv)dt
∣∣∣∣

=
∣∣∣∣∫ h

0
Dψ(x + tv) · vdt

∣∣∣∣
≤
∫ h

0
|Dψ(x + tv) · v| dt

≤
∫ h

0

∣∣∣∣1ε D f
(

x + tv− y
ε

)
· v
∣∣∣∣ dt

≤ 1
ε

∫ h

0
Mdt
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=
Mh

ε
.

Consequentemente,

|ζh| =

∣∣∣∣∣∣∣∣g(y)
f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

∣∣∣∣∣∣∣∣
=
∣∣∣∣g(y)

ψ(x + hv)− ψ(x)
h

∣∣∣∣
= |g(y)| |ψ(x + hv)− ψ(x)|

|h|

≤ |g(y)| Mh
ε|h| .

Portanto, tomando γ(x) = |g(y)| Mh
ε|h| temos que |ζh(x)| ≤ γ(x), com γ integrável, pois é

constante.

Deste modo, podemos aplicar o Teorema da Convergência Dominada em (62) e

obtemos que

lim
h→0

gε(x + hv)− gε(x)
h

=
1
εn

lim
h→0

∫
Rn

g(y)
f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

dy



=
1
εn

∫
Rn

g(y) lim
h→0

f
(

x + hv− y
ε

)
− f

(
x− y

ε

)
h

dy


=
∫

Rn
g(y)

1
εn

1
ε

∂ f
∂v

(
x− y

ε

)
dy

=
∫

Rn
g(y)

∂ f ε

∂v
(x− y)dy

= g ∗ ∂ f ε

∂v
(x).

Donde temos o desejado.

(2): Seja V ⊂ Rn compacto. Considere ε1 > 0 arbitrário e tome W = {x ∈ Rn :

d(x, V) < ε1}. Note que V ⊂W. Além disso, como g ∈ C1,1(Rn), então g é diferenciável

em Rn e, logo, continuamente uniforme em Rn.

Ou seja, para todo δ > 0, existe ε2(δ) > 0 tal que para todo x, y ∈W

|x− y| < ε2 =⇒ |g(x)− g(y)| < δ.
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Seja, então, x ∈ V arbitrário e considere ε0 = min{ε1, ε2}. Note que |x− y| < ε0 =⇒
y ∈W e, portanto, |g(x)− g(y)| < δ. Logo, para todo ε < ε0, segue-se que

|g(x)− gε(x)| =
∣∣∣∣g(x)−

∫
Rn

g(y) fε(y− x)dy
∣∣∣∣

=
∣∣∣∣g(x)

∫
Rn

f ε(y− x)dy−
∫

Rn
g(y) f ε(y− x)dy

∣∣∣∣
=
∣∣∣∣∫

Rn
g(x) f ε(y− x)dy−

∫
Rn

g(y) f ε(y− x)dy
∣∣∣∣

=
∣∣∣∣∫

Rn
g(x) f ε(y− x)− g(y) f ε(y− x)dy

∣∣∣∣
=
∣∣∣∣∫

Rn
(g(x)− g(y)) f ε(y− x)dy

∣∣∣∣
≤
∫

Rn
|g(x)− g(y)| | f ε(y− x)| dy

<
∫

Rn
δ | f ε(y− x)| dy

= δ
∫

Rn
| f ε(y− x)| dy

= δ

Como x ∈ V foi tomado arbitrariamente, gε → g uniformemente em V; que também foi

tomado arbitrariamente, e, portanto, segue o requerido.
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U M A F Ó R M U L A D E
C O M PA R A Ç Ã O PA R A A
C U RVAT U R A T O TA L D O
E N V O LT Ó R I O C O N V E X O

Nesse capítulo iremos desenvolver as ferramentas necessárias para provarmos o Teorema

4.1, que é o objetivo principal desse trabalho.

3.1 regularidade e pontos singulares da fun-
ção distância

Nesta seção queremos provar uma relação entre a regularidade de uma hipersuperfície e

a regularidade da função distância a esta hipersuperfície, e estudaremos uma vizinhança

da hipersuperfície para entendermos esta relação.

No restante desta dissertação (M, g) irá denotar uma variedade Riemanniana completa

e conexa com dim(M) ≥ 2.

Definição 3.1. Sejam (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de M.

Definimos a vizinhança tubular com raio r de X como

Ur(X) = d−1
X ([0, r[).

Exemplo 3.2. Considere γ uma curva em R2 cujo traço está na Figura 1. A vizinhança tubular

com raio r de γ está representada na Figura 1.

57
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Figura 1: A vizinhança tubular com raio r de γ.

Independente da regularidade do subconjunto temos que a função distância a este

subconjunto é diferenciável em quase todo ponto, como afirma o próximo lema.

Lema 3.3. Seja (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de M. Então dX

é lipschitz. Em particular, dX é diferenciável em quase todo ponto.

Demonstração. Primeiramente, vamos mostrar que dX é lipschitz. Sejam A, B ⊂ M

arbitrários e considere a ∈ A e b ∈ B. Para cada x ∈ X ⊂ M, temos que

d(a, x) ≤ d(a, b) + d(b, x) (63)

d(b, x) ≤ d(b, a) + d(a, x) (64)

Por (63) temos que

in f
x∈X,a∈A,b∈B

d(a, x) ≤ in f
x∈X,a∈A,b∈B

d(a, b) + in f
x∈X,a∈A,b∈B

d(b, x)

in f
x∈X,a∈A

d(a, x) ≤ in f
a∈A,b∈B

d(a, b) + in f
x∈X,b∈B

d(b, x)

d(A, X) ≤ d(A, B) + d(B, X). (65)

Analogamente, por (64), temos que

d(B, X) ≤ d(A, B) + d(A, X). (66)

Por (65) e (66) temos que

|d(A, X)− d(B, X)| ≤ 1d(A, B).

Donde temos que dX é lipschitz. Segue do Teorema de Rademacher que dX é diferenciá-

vel em quase todo ponto.
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Definição 3.4. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto de M e X ⊂ M

um subconjunto fechado. Dizemos que p0 ∈ X é um pé da perpendicular de p em X se

valem

1. d(p, p0) = dX(p);

2. A geodésica minimizante da distância conectando p e p0 é única.

Em particular, note que todo ponto de X é seu próprio pé da perpendicular.

Exemplo 3.5. Considere o espaço R2 com a métrica Euclidiana e o conjunto X = {(x, y) ∈ R2 :

y = x2}. Seja p = (0, 2) ∈ R2 um ponto. Note que o ponto p possui dois pés da perpendicular

no conjunto X; que são os pontos p0 =
(√

3
2 , 3

2

)
e p0 =

(
−
√

3
2 , 3

2

)
. Como ilustra a Figura 2.

Figura 2: Exemplo dos pés da perpendicular de um ponto sobre um conjunto.

Novamente, o próximo lema nos dá resultados acerca da diferenciabilidade da função

distância a um subconjunto independentemente da regularidade do subconjunto.

Lema 3.6. Sejam (M, g) uma variedade Riemanniana, X ⊂ M um subconjunto fechado de M e

p ∈ M \ X. Então

1. dX é diferenciável em p se, e somente se, p tem um único pé da perpendicular em X.

2. Se dX é diferenciável em p então grad(dX) é tangente à geodésica conectando p a seu pé

da perpendicular em X e |grad(dX)| = 1.

3. Seja U ⊂ M \ X um aberto onde dX é diferenciável pontualmente então dX é de classe C1

em U.
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Demonstração. (1) Por [CS04, Corolário 3.4.5, p. 67-68] temos que para S ⊂ Rn, um

subconjunto fechado de Rn, vale que dS é diferenciável em x /∈ S se, e somente se, x

tem somente um pé da perpendicular.

Como sistemas de coordenadas preservam as propriedades de funções semicôncavas

e derivadas generalizadas por [MM02, Proposição 2.10, p. 5], temos que este resultado

estende-se para variedades Riemannianas.

(2) Como dX é diferenciável em p, pelo item (1) do Lema 3.6 temos que p tem um

único pé da perpendicular em X. Considere γ a geodésica minimizante de p ao seu pé

da perpendicular em X, N o normal para fora dado pela Definição 2.63 e σ a função

distância dada pela Definição 2.63.

Pelo Lema 2.65 temos que N|γ(s) = γ′(s) e que σ(p) = dX(p); além disso, pelo item (27)

do Lema 2.66 temos que |N| = 1.

O Lema de Gauss generalizado 2.67 garante que N = grad(σ).

Portanto, temos que grad(dX) = N = γ′, isto é , o gradiente da função distância a

um subconjunto é tangente à geodésica que minimiza distância entre p e seu pé da

perpendicular. Além disso, |grad(dX)| = |N| = 1.

(3) Seja B ⊂ Rn um subconjunto fechado de Rn, A ⊂ Rn \ B um aberto e x ∈ A

tal que a função distância ao subconjunto B, dB : A → R, é diferenciável em x. Por

[CS04, Proposição 3.1.5 item c, p. 51-52] temos que D+dB(x) é não vazio e, em particular,

D+dB(x) = {DdB(x)}, onde D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− ⟨p, y− x⟩
|y− x| ≥ 0

}
.

Por outro lado, por [MM02, Proposição 3.4, p. 9] temos que a função dB é semicôncava

e como D+dB(x) = {DdB(x)} para todo x ∈ A, temos que, por [CS04, Proposição 3.3.4

item e, p. 57-59], dB é de classe C1 em A.

Assim, concluímos que para A ⊂ Rn \ B um aberto onde dB é diferenciável pon-

tualmente então dB é de classe C1 em A, isto é, o resultado análogo no caso em que

M = Rn.

Como sistemas de coordenadas preservam as propriedades de funções semicôncavas

e derivadas generalizadas por [MM02, Proposição 2.10, p. 5], temos que este resultado

estende-se para variedades Riemannianas.

Para não termos problemas de diferenciabilidade da função distância na fronteira de

um subconjunto usamos a função distância com sinal, a qual definimos a seguir.

Definição 3.7. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω, isto é, um subconjunto aberto de M, conexo,
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com fecho compacto e ∂Ω = Γ. Definimos a distância com sinal d∗Γ : M → R de Γ (com

relação a Ω) por

d∗Γ(·) = dΩ(·)− dM\Ω(·).

De acordo com a Definição 3.7, temos que

d∗Γ =

−dΓ(p), se p ∈ Ω

dΓ(p), se p ̸∈ Ω
.

De fato, notemos que se p ∈ Ω então vale que

d∗Γ(p) = dΩ(p)− dM\Ω(p)

= 0− d∂(M\Ω)(p)

= −dΓ(p),

e se p ̸∈ Ω vale que

d∗Γ(p) = dΩ(p)− dM\Ω(p)

= d∂(Ω)(p)− 0

= dΓ(p).

Definição 3.8. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Chamamos o conjunto de nível (d∗Γ)−1(t) de hipersuperfícies paralelas

exteriores de Γ se t > 0, e hipersuperfícies paralelas interiores de Γ se t < 0.

Exemplo 3.9. Considere o espaço R2 com a métrica Euclidiana e a esfera S1
5 ⊂ R2 de raio 5.

A Figura 3 representa a hipersuperfície paralela exterior (d∗Γ)−1(2) com t = 2 da esfera S1
5 e a

hipersuperfície paralela interior (d∗Γ)−1(−2) com t = −2 da esfera S1
5.
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Figura 3: Exemplos de hipersuperfícies paralelas interior e exterior de uma esfera.

A próxima definição nos dará a definição de cut locus de uma hipersuperfície, posteri-

ormente estudaremos qual a relação entre os pontos no cut locus de uma hipersuperfície

e os pontos singulares da função distância a uma hipersuperfície.

Além da relação que queremos estabelecer entre a regularidade da hipersiperfície e a

regularidade da função distância a esta hipersuperfície, vamos estabelecer também uma

regularidade mínima para que a hipersuprfície e o seu cut locus sejam disjuntos.

Definição 3.10. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Defina reg(d∗Γ) a união de todos os conjuntos abertos de M onde cada

ponto tem um único pé da perpendicular em Γ. Definimos assim o cut locus de Γ como

cut(Γ) = M \ reg(d∗Γ).

Exemplo 3.11. Considere o espaço R2 com a métrica Euclidiana e a elipse E ⊂ R2. A Figura 4

representa o cut locus de E , que é dado pelo segmento que une os focos da elipse E .
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Figura 4: O cut locus de uma elipse.

O próximo lema estabelece uma primeira relação entre a classe de diferenciabili-

dade da hipersuperfície e a classe de diferenciabilidade da função distância a esta

hipersuperfície.

Lema 3.12. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície mergulhada

em M tal que Γ é de classe C1 e limita um domínio Ω então d∗Γ é C1 em M \ cut(Γ) com

|grad(d∗Γ)| = 1.

Demonstração. Vamos provar que d∗Γ é C1 em M \ cut(Γ). Primeiramente, note que

M \ cut(Γ) = (M \ Γ) \ cut(Γ))∪ (Γ \ cut(Γ)).

Afirmamos que d∗Γ é C1 em (M \ Γ) \ cut(Γ).

De fato, como cut(Γ) é o conjunto dos pontos que tem pelo menos dois pés da

perpendicular; segue-se do Lema 3.6 item (1), que cut(Γ) é o conjunto dos pontos onde

d∗Γ não é diferenciável.

Então, como (M \Γ) \ cut(Γ) é um subconjunto aberto em M \Γ onde d∗Γ é diferenciável,

pelo Lema 3.6 item (3), temos que d∗Γ é C1 em (M \ Γ) \ cut(Γ), como requerido.

Assim, basta verificar que d∗Γ é C1 em Γ \ cut(Γ).

De fato, seja p ∈ Γ \ cut(Γ) arbitrário e considere U uma vizinhança aberta e conexa

de p em M que é disjunta de cut(Γ). Note que tal vizinhança existe pois M \ cut(Γ) =

M \ (M \ reg(d∗Γ)) = reg(d∗Γ) e reg(d∗Γ) é uma reunião de abertos, portanto, aberto.

Como U é disjunto de cut(Γ), cada ponto de U tem um único pé da perpendicular

em Γ ∩U, pois se existisse um ponto em U com dois pés da perpendicular em Γ ∩U,

tal ponto teria dois pés da perpendicular em Γ e, portanto, pertenceria a cut(Γ), o que é

uma contradição, pois U e cut(Γ) são disjuntos por construção; e, então, U é fibrado por

segmentos de geodésicas ortogonais a Γ∩U.
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Seja Γε = (d∗Γ)−1(ε), onde ε > 0 é tal que Γε ∩U ̸= ∅. Note que cada ponto em Γε ∩U

tem um único pé de perpendicular em Γ∩U, pois Γε ∩U ⊂ U e cada ponto de U tem

um único pé da perpendicular em Γ ∩U, então, em particular, cada ponto de Γε ∩U

tem um único pé da perpendicular em Γ∩U.

Primeiramente note que U \ Γ é um subconjunto aberto (pois Γ é fechada e U é aberto)

de M \ Γ onde d∗Γ é diferenciável pontualmente, pois cada ponto de U, em particular

U \ Γ, tem um único pé da perpendicular em U ∩ Γ e pelo Lema 3.6 item (1) segue-se

que d∗Γ é diferenciável pontualmente. Portanto, pelo Lema 3.6 item (3) temos que d∗Γ é

C1 em U \ Γ.

Logo, como d∗Γ é C1 em U \ Γ segue-se, pelo Teorema da Função Implícita, que Γε ∩U

é uma hipersuperfície.

Note também que Γε ∩U é ortogonal aos segmentos de geodésica que fibram U,

pois pelo Lema 3.6 item (2) grad(d∗Γ) é tangente a tais segmentos de geodésicas e, além

disso, grad(d∗Γ) é ortogonal a Γε ∩U. Por outro lado, temos que esses segmentos não

intersectam uns aos outros, pois caso eles se intersectassem teríamos um ponto (a

intersecção) em U com dois pés da perpendicular em Γ∩U, o que é uma contradição,

portanto segue-se que U é disjunto de cut(Γε). Assim d∗Γε
é diferenciável pontualmente

em U \ Γε e pelo Lema 3.6 item (3), d∗Γε
é C1 em U \ Γε.

Agora, note que d∗Γ(p) = d∗Γε
(p) + ε, para todo p ∈ U.

De fato, temos três possibilidades, vamos analisá-las separadamente. Primeiramente,

denotemos por Ω ⊂ M o conjunto tal que Γε = ∂Ω.

• Considere p ∈ U tal que p /∈ Ω e p /∈ Ω. Seja p0 ∈ Γε o pé da perpendicular de p

em Γε. Logo

d∗Γε
(p) = dΩ(p)− dM\Ω(p)

= dΩ(p)

= dΩ(p)− dΩ(p0).

Mas como d∗Γ(p) = dΩ(p)− dM\Ω(p) = dΩ(p) e d∗Γ(p0) = dΩ(p0)− dM\Ω(p0) = dΩ(p0)

temos que

d∗Γε
(p) = dΩ(p)− dΩ(p0)

= d∗Γ(p)− ε.

Consequentemente, d∗Γ(p) = d∗Γε
(p) + ε.
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• Considere p ∈ U tal que p ∈ Ω e p /∈ Ω. Seja p0 ∈ Γε o pé da perpendicular de p

em Γε. Logo

d∗Γε
(p) = dΩ(p)− dM\Ω(p)

= −dM\Ω(p)

= −(dΩ(p0)− dΩ(p))

= dΩ(p)− dΩ(p0).

Mas como d∗Γ(p) = dΩ(p)− dM\Ω(p) = dΩ(p) e d∗Γ(p0) = dΩ(p0)− dM\Ω(p0) = dΩ(p0)

temos que

d∗Γε
(p) = dΩ(p)− dΩ(p0)

= d∗Γ(p)− ε.

Consequentemente, d∗Γ(p) = d∗Γε
(p) + ε.

• Considere p ∈ U tal que p ∈ Ω e p ∈ Ω. Seja p0 ∈ Γε o pé da perpendicular de p

em Γε. Logo

d∗Γε
(p) = dΩ(p)− dM\Ω(p)

= −dM\Ω(p)

= −(dM\Ω(p) + dΩ(p0))

= −dM\Ω(p)− dΩ(p0).

Mas como d∗Γ(p) = dΩ(p)− dM\Ω(p) = −dM\Ω(p) e d∗Γ(p0) = dΩ(p0)− dM\Ω(p0) =

dΩ(p0) temos que

d∗Γε
(p) = −dM\Ω(p)− dΩ(p0)

= d∗Γ(p)− ε.

Consequentemente, d∗Γ(p) = d∗Γε
(p) + ε.

Portanto, d∗Γ é C1 em p ∈ Γ \ cut(Γ); como tal p ∈ Γ \ cut(Γ) foi tomado arbitrariamente,

segue o requerido.

Note que |grad(d∗Γ)| = 1 segue diretamente do Lema 3.6 item (2).

Como queremos estudar como a classe de diferenciabilidade da hipersuperfície

interfere na intersecção da própria hipersuperfície com o seu cut locus. Assim, se Γ é de
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classe C1, podemos ter que Γ e cut(Γ) sejam não disjuntos. De fato, considere o espaço

R2 com a métrica Euclidiana e Γ = {(x, y) ∈ R2 : y = |x| 32}. Note que Γ é de classe C1.

De fato, considere f (x) = |x| 32 e note que

f ′(x) =


3x

2
√
|x|

, x ̸= 0

0, x = 0.

Além disso, lim
x→0

f ′(x) = 0. Donde segue-se que f ∈ C1 e, portanto, Γ é de classe C1. Note

também que cut(Γ) = {(0, y) ∈ R2 : y ≥ 0}, logo Γ∩ cut(Γ) = {(0, 0)}.
Por outro lado, provaremos a seguir que Γ ser de classe C1,1 é uma condição necessária

e suficiente para que tenhamos uma vizinhança de Γ onde cada ponto tem um único pé

da perpendicular em Γ. Em particular, teremos que Γ∩ cut(Γ) = ∅. Além disso, nesse

caso, d∗Γ é de classe C1,1.

Voltando ao contra-exemplo apresentado note que Γ não é de classe C1,1.

De fato, considere f (x) = |x| 32 e note que

f ′(x) =


3x

2
√
|x|

, x ̸= 0

0, x = 0.

Vamos mostrar que f ′ não é Lipschitziana. Seja 0 < x < 1 arbitrário e observemos que

∣∣ f ′(x)− f ′(−x)
∣∣ =

∣∣∣∣∣ 3x
2
√
|x|
− 3(−x)

2
√
|(−x)|

∣∣∣∣∣
=
∣∣∣∣32 (√x +

√
x
)∣∣∣∣

= 3
√

x

>
3
2
|2x|

=
3
2
|x− (−x)| .

Logo, segue o desejado.

A seguir faremos algumas definições sobre subconjuntos de uma variedade Rieman-

nina que estão relacionados a uma hipersuperfície, como o eixo medial ou o esqueleto.

Posteriormente apresentamos um lema que relaciona estes conjuntos apresentados.

Definição 3.13. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Definimos o eixo medial de Γ como o conjunto de pontos em M com

múltiplos pés de perpendicular em Γ. Denotamos-o por medial(Γ).
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Afirmamos que

cut(Γ) = cl(medial(Γ)). (67)

De fato, sejam Aλ ⊂ M, λ ∈ L ⊂ N, abertos onde cada ponto tem um único pé de

perpendicular. Primeiramente, note que reg(d∗Γ) =
⋃

λ∈L

Aλ. Além disso, pelo Lema 3.6

item (1), temos que Aλ é o conjunto dos pontos onde d∗Γ é diferenciável. Assim, por

definição, M \ Aλ é um conjunto fechado que contem medial(Γ).

Portanto,

cut(Γ) = M \ reg(d∗Γ)

= M \
⋃

λ∈L

Aλ

=
⋂

λ∈L

M \ Aλ

= cl(medial(Γ)).

Exemplo 3.14. Considere o espaço R2 com a métrica Euclidiana e a elipse E ⊂ R2. O eixo

medial da elipse E é dado pelo segmento que une os focos da elipse E sem os focos.

Definição 3.15. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Denotamos por sing(d∗Γ) o conjunto dos pontos singulares de d∗Γ ou pontos

de M onde d∗Γ não é diferenciável.

Afirmamos que medial(Γ) = sing(d∗Γ) como consequência direta do Lema 3.6 item (1)

e, consequentemente, cut(Γ) = cl(sing(d∗Γ))

Definição 3.16. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω. Dizemos que uma esfera geodésica S ⊂ cl(Ω)

é uma esfera geodésica maximal se ela não esta contida numa esfera geodésica de raio maior

contida em cl(Ω). Definimos também o esqueleto de Ω como o conjunto dos centros das esferas

maximais contidas em cl(Ω) e denotamos-o por skeleton(Ω).

Exemplo 3.17. Seja γ uma curva fechada em R2 cujo traço está na figura 5. Note que γ é uma

hipersuperfície que limita um domínio Ω. A Figura 5 representa uma esfera geodésica maximal

S e o esqueleto de γ.
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Figura 5: Uma esfera geodésica maximal e o esqueleto de uma hipersuperfície.

Lema 3.18. Sejam (M, g) uma variedade Riemanniana e Γ uma hipersuperfície mergulhada em

M de modo que Γ limita um domínio Ω tal que todo par de pontos em Ω é conectado por uma

única geodésica em M. Assim,

medial(Γ)∩Ω ⊂ skeleton(Ω) ⊂ cl(medial(Γ)∩Ω).

Demonstração. medial(Γ)∩Ω ⊂ skeleton(Ω)

Seja x ∈ medial(Γ)∩Ω. Então, por definição, x tem pelo menos dois pés da perpendi-

cular em Γ, sejam y, y′ ∈ Γ tais pés da perpendicular de x em Γ. Como d(x, y) = d(x, y′)

considere Sx a esfera geodésica de centro x que passa por y e y′.

Suponha que existe uma esfera S′ ⊂ cl(Ω) tal que S′ contém Sx. Note que y, y′ ∈ S′,

pois como S′ contém S, se y e y′ não estiverem em S′ teríamos que existiria pelo menos

um ponto z ∈ S′ tal que z ̸∈ cl(Ω), o que não é possível pois S′ ⊂ cl(Ω). Considere

então duas geodésicas γ e γ′ em cl(Ω) que se iniciam em y, y′, respectivamente, e são

ortogonais a S. Tais geodésicas se encontram em x pela primeira vez, pois, por hipótese,

todo par de pontos em Ω é conectado por uma única geodésica em M. Mas γ e γ′

também são ortogonais a S′, pois, novamente, se não fossem existiria um ponto z ∈ S′

tal que z ̸∈ cl(Ω). Portanto, x é o centro de S′ também. Consequentemente, Sx = S′,

donde temos que Sx é maximal. Logo, x ∈ skeleton(Ω).

skeleton(Ω) ⊂ cl(medial(Γ)∩Ω)

Seja x ∈ skeleton(Ω). Então existe uma esfera maximal S ∈ cl(Ω) com centro em x. Por

(67), é suficiente mostrar que x ∈ cut(Γ). Suponha, por absurdo, que x ̸∈ cut(Γ). Então,

pelo Lema 3.6 item (3), dΓ é C1 em uma vizinhança U de x. Além disso, pelo mesmo
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Lema item (2), grad(dΓ) ̸= 0 em U e suas curvas integrais são geodésicas minimizantes

que conectam os pontos de U com seus únicos pés de perpendicular em Γ.

Disto segue que a geodésica que conecta x ao seu pé da perpendicular em Γ pode ser

estendida para uma geodésica maior. Isso contradiz a maximalidade de S.

A fim de querer obter relações entre a classe de diferenciabilidade de uma hiper-

superfície e a classe de diferenciabilidade da função distância a essa hipersuperfície

apresentamos o próximo lema. Este lema ainda não apresenta o melhor resultado

possível, isto é, podemos refinar as classes de diferenciabilidade apresentadas nele e o

faremos adiante.

Lema 3.19. Sejam (M, g) uma variedade Riemanniana com g de classe Ck, k ≥ 2, e Γ ⊂ M

uma hipersuperfície mergulhada em M tal que Γ limita um domínio Ω. Se Γ é Ck, k ≥ 2, então

d∗Γ é Ck em M \ cut(Γ).

Demonstração. Primeiramente note que como Γ é de classe Ck, k ≥ 2, temos, em particu-

lar, que Γ é de classe C1. Pelo Lema 3.12 temos que d∗Γ é de classe C1 em M \ cut(Γ). Em

particular, pelo Lema 3.6 item (1) temos que cada ponto de M \ cut(Γ) tem único pé da

perpendicular em Γ.

Sejam U = E(V) uma vizinhança normal de Γ em M, p ∈ M \ cut(Γ) arbitrário e p0 o

seu pé da perpendicular em Γ, (x1, . . . , xn) um sistema de cartas coordenadas de Fermi

centrado em p0 e En a seção ortonormal de NΓ. Para (q, v) ∈ V, com v = vn En|q, temos

que xn é dado por

xn

(
E
(

q, vn En|q
))

= vn.

Assim, como p ∈ M \ cut(Γ) tem um único pé da perpendicular em Γ, temos pelo Lema

2.65 que

dΓ(p) = σ(p),

onde σ2 = x2
n.

Logo, como g é de classe Ck, k ≥ 2, segue do Teorema de dependência diferenciável

dos parâmetros de EDO’s que a aplicação exponencial normal de Γ em M é de classe

Ck, com k ≥ 2.

Disso segue-se que xn, σ e, consequentemente, dΓ são de classe Ck, k ≥ 2, em

M \ cut(Γ).

Portanto,

d∗Γ =

−dΓ(p), se p ∈ Ω

dΓ(p), se p ̸∈ Ω
.
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é de classe Ck, k ≥ 2, em M \ cut(Γ).

Definição 3.20. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Definimos reach(Γ) = d(Γ, cut(Γ)) (= in f {d(x, y) : x ∈ Γ, y ∈ cut(Γ)}).

Pela Definição 3.20 temos que reach(Γ) ≥ r > 0 se, e somente se, existe uma bola

geodésica de raio r rolando livremente em cada lado de Γ em M, isto é, para cada ponto

p ∈ Γ passam as fronteiras de duas bolas geodésicas B, B′ de raio r tais que B ⊂ cl(Ω), e

B′ ⊂ M \Ω.

Definição 3.21. Sejam Ω ⊂ Rn um subconjunto aberto de Rn, 0 < α ≤ 1 e k ≥ 1. Dizemos

que uma função f : Ω→ R é de classe Ck,α em Ω se f é de classe Ck em Ω e o seguinte supremo

é finito

sup
x,y∈Ω

x ̸=y

| f (k)(x)− f (k)(y)|
|x− y|α .

Da Definição 3.21 temos, em particular, que se uma função f : Rn → R é de classe

C1,1 então f é de classe C1 e sua diferencial é Lipschitz. De fato, considere o supremo

dado na Definição 3.21 igual a L ∈ R. Assim, para todo x, y ∈ Rn, tomando a norma

do máximo em Rn, temos que

sup
a ̸=b

a,b∈Rn

| f ′(a)− f ′(b)|
|a− b| = L =⇒ | f ′(x)− f ′(y)| ≤ L|x− y|.

Agora podemos definir uma hipersuperfície de classe Ck,α tanto para hipersuperfícies

de Rn quanto para hipersuperfícies de uma variedade Riemannina.

Definição 3.22. Seja Ω ⊂ Rn um domínio e Γ = ∂Ω. Dizemos que Ω e Γ são de classe Ck,α,

0 < α ≤ 1 e k ≥ 1, se cada ponto de Γ tem uma vizinhança U de modo que Γ∩U é o gráfico de

uma função de classe Ck,α.

Definição 3.23. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M. Dizemos que Γ é C1,1, se ela é C1,1 em cartas locais, isto é, para cada p ∈ M

existe uma vizinhança U de p em M e um difeomorfismo C∞ ϕ : U → Rn tal que ϕ(Γ ∩U) é

C1,1 em Rn. Uma função u : M → R é chamada localmente C1,1 em alguma região X, se u

é C1,1 em uma cobertura de X por cartas locais. Se X é compacto, então dizemos que u é C1,1

próximo a X.
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O próximo lema nos da uma equivalência que relaciona a classe de diferenciabilidade

da hipersuperfície, com seu reach e a classe de diferenciabilidade da função distância a

esta hipersuperfícia; que é o resultado que buscávamos desde o começo da seção.

Lema 3.24. Seja (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície mergulhada

em M tal que Γ limita um domínio Ω, isto é, ∂Ω = Γ. As seguintes condições são equivalentes:

1. reach(Γ) > 0.

2. Γ é C1,1.

3. d∗Γ é C1,1 próximo a Γ.

Demonstração. (1) =⇒ (2)

Segue diretamente de [Lyt05, Proposição 1.4, p. 203].

(2) =⇒ (1)

Por [Alb15, Teorema 1.6, p. 401 e p. 404-405] temos, em particular, que cut(Γ) ⊂⊂
M \ Γ. Como Γ é fechado temos que d(Γ, cut(Γ)) > 0, isto é, reach(Γ) > 0.

(3) =⇒ ((1)∨ (2))

Seja p ∈ Γ e U uma vizinhança de p em M tal que u = d∗Γ é C1,1 em U. Note que tais

p ∈ Γ e U existem por hipótese.

Pelo Lema 3.6 item (2), |grad(u)| = 1 em U \ Γ.

Seja X ∈ TpM tal que X ⊥ Y, ∀Y ∈ TpΓ e |X(p)| = 1. Considere a geodésica γ tal

que γ(0) = p e γ′(0) = X(p). Tomemos pn = γ

(
1
n

)
. Pelo Lema 3.6 item (2) temos que

γ′
(

1
k

)
= grad(u)(pk), ∀k ∈N. Como u = d∗Γ é C1,1 em U, em particular, segue-se que

|grad(u)(p)| =
∣∣∣grad(u)

(
lim

n→∞
pn

)∣∣∣
=
∣∣∣ lim
n→∞

grad(u)(pn)
∣∣∣

=
∣∣∣∣ lim
n→∞

γ′
(

1
n

)∣∣∣∣
=
∣∣∣∣γ′ ( lim

n→∞

1
n

)∣∣∣∣
=
∣∣γ′(0)

∣∣
= |X(p)|

= 1
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Portanto, |grad(u)| ̸= 0 em U. Em particular, Γ∩U é um conjunto de nível regular de u,

e é C1 pelo Teorema da aplicação inversa.

Seja ϕ : U → Rn um difeomorfismo. Então ϕ(Γ∩U) é um conjunto de nível regular

de uma função u ◦ ϕ−1 : Rn → R. Como u ◦ ϕ−1 é localmente C1,1 temos que ϕ(Γ∩U) é

localmente C1,1 em Rn. Portanto, Γ é localmente C1,1.

((1)∨ (2)) =⇒ (3)

Seja p ∈ Γ e U uma vizinhança de p em M tal que cada ponto de U tem um único

pé da perpendicular em Γ, note que tal vizinhança de p existe pois reach(Γ) > 0. Além

disso, como Γ é C1,1 por hipótese, em particular, é C1. Logo, pelo Lema 3.12, u é C1 em

M \ cut(Γ). Portanto, u é C1 em U, pois U e cut(Γ) são disjuntos por construção.

Seja Γε = u−1(ε), onde ε > 0 é tal que Γε ∩U ̸= ∅. Note que cada ponto em Γε ∩U tem

um único pé de perpendicular em Γ∩U, pois Γε ∩U ⊂ U e cada ponto de U tem um

único pé da perpendicular em Γ∩U, então, em particular, cada ponto de Γε ∩U tem um

único pé da perpendicular em Γ∩U. Portanto, reach(Γε ∩U) > 0 e, logo, Γε ∩U é C1,1.

Seja ϕ : U → Rn um difeomorfismo e note que temos uma fibração de Rn por

hipersuperfícies C1,1 dadas pelos conjuntos de nível de u ◦ ϕ−1.

Como
grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| é ortogonal a esses conjuntos de nível C1,1, segue que grad(u ◦

ϕ−1) é localmente lipschtz.

De fato, sejam x1, x2 ∈ ϕ(U) e note que como temos uma fibração de Rn por hiper-

superfícies C1,1 dadas pelos conjuntos de nível de u ◦ ϕ−1 existem ε1, ε2 > 0 tais que

x1 ∈ (u ◦ ϕ−1)−1(ε1) e x2 ∈ (u ◦ ϕ−1)−1(ε2), onde (u ◦ ϕ−1)−1(εi), i = 1, 2, são hipersuper-

fícies de classe C1,1.

Considere (x2)0 o pé da perpendicular de x2 em (u ◦ ϕ−1)−1(ε1). Note que a ge-

odésica minimizante da distância conectando x2 a (x2)0 é uma reta, pois ϕ(U) ⊂

Rn. Logo,
grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| (x2) =

grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| ((x2)0), pois

grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| ((x2)0) e

grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| (x2) são tangentes à geodésica minimizante da distância conectando

x2 a (x2)0, que é uma reta, portanto, o vetor tangente é constante.

Consequentemente, comparar
grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| em x1 e x2 é análogo a comparar em x1

e (x2)0, isto é,

∣∣∣∣ grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| (x1)− grad(u ◦ ϕ−1)

|grad(u ◦ ϕ−1)| (x2)
∣∣∣∣ =
∣∣∣∣ grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| (x1)− grad(u ◦ ϕ−1)

|grad(u ◦ ϕ−1)| ((x2)0)
∣∣∣∣ .
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Mas como (u ◦ ϕ−1)−1(ε1) é uma hipersuperfície de classe C1,1 e
grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| é or-

togonal a hipersuperfície (u ◦ ϕ−1)−1(ε1) em x1 e (x2)0, temos que existe L ≥ 0 tal

que ∣∣∣∣ grad(u ◦ ϕ−1)
|grad(u ◦ ϕ−1)| (x1)− grad(u ◦ ϕ−1)

|grad(u ◦ ϕ−1)| (x2)
∣∣∣∣ ≤ L|x1 − x2|.

Consequentemente, u ◦ ϕ−1 é localmente C1,1 e d∗Γ é C1,1 próximo a Γ.

A partir do Lema 3.24 podemos obter os seguintes resultados.

Proposição 3.25. Seja (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω, isto é, ∂Ω = Γ. Então d∗Γ é localmente C1,1 em

M \ cut(Γ). Em particular se Γ é C1,1, então d∗Γ é localmente C1,1 em Ur(Γ) para r = reach(Γ).

Demonstração. Sejam p ∈ M \ cut(Γ) e Γp = (d∗Γ)−1(d∗Γ(p)). Note que Γp ∩ (M \ cut(Γ)) ̸= ∅,

pois p ∈ Γp e p ∈ M \ cut(Γ).

Por outro lado, cada ponto em Γp ∩ (M \ cut(Γ)) tem um único pé de perpendicular

em Γ∩ (M \ cut(Γ)), pois Γp ∩ (M \ cut(Γ)) ⊂ M \ cut(Γ) e cada ponto de M \ cut(Γ) tem

um único pé da perpendicular em Γ ∩ (M \ cut(Γ)), então, em particular, cada ponto

de Γp ∩ (M \ cut(Γ)) tem um único pé da perpendicular em Γ∩ (M \ cut(Γ)). Portanto,

reach(Γp ∩ (M \ cut(Γ))) > 0 e, pelo Lema 3.24, d∗Γp
é C1,1 próximo a p.

Agora, note que d∗Γ = d∗Γp
+ d∗Γ(p) em M \ cut(Γ). Portanto, d∗Γ é C1,1 em p ∈ M \ cut(Γ);

como tal p ∈ M \ cut(Γ) foi tomado arbitrariamente, segue o requerido.

Proposição 3.26. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω e reach(Γ) = r > 0. Considere que KM ≥ −C,

para C ≥ 0, em Ur(Γ). Então, para δ =
r
2

,

|Hess(d∗Γ)| ≤
√

Ccoth
(√

Cδ
)

em quase todo ponto de Uδ(Γ).

Demonstração. Pela Proposição 3.25 e o Teorema de Rademacher, d∗Γ é duas vezes dife-

renciável em quase todo ponto de Uδ(Γ).

Seja p ∈ Uδ(Γ) um ponto arbitrário tal que d∗Γ é duas vezes diferenciável em p e

considere Γp = (d∗Γ)−1(d∗Γ(p)).

Então os autovalores de Hess(d∗Γ)(p), a menos para aquele na direção de grad(d∗Γ)(p),

que se anula, são as curvaturas principais para o conjunto de nível Γp.
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Como, por hipótese, reach(Γ) = r > 0 temos que uma bola de raio r rola livremente

em cada lado de Γ. Portanto uma bola de raio δ =
r
2

rola livremente em cada lado de Γp.

Afirmamos que as curvaturas principais de Γp em p são limitadas pelas curvaturas

principais das esferas de raio δ em Ur(Γ), que por sua vez são limitadas por cima por√
Ccoth

(√
Cδ
)

por [Che89, Proposição 1.7.1, p. 184].

De fato, considere κ1, . . . , κn−1 as curvaturas principais de Γp em p cujas respectivas

direções principais são E1, . . . , En−1 e τ1, . . . , τn−1 as curvaturas principais de Sδ em

p cujas respectivas direções principais são F1, . . . , Fn−1, pois todas as direções são

principais em Sδ e TpΓp = TpSδ.

Além disso, considere N(p) o normal a Γp em p e note que N(p) e −N(p) são os

normais às esferas de raio δ em Ur(Γ) que rolam livremente em cada lado de Γp. Seja

Πp
i o espaço gerado pelos vetores N(p) e Ei. Note que, pelo Teorema de Whitney do

mergulho e o Teorema da transversalidade, temos que as interseções Πp
i ∩ Γp e Πp

i ∩ Sδ

(com ambas as esferas que rolam livremente em cada lado de Γp), em uma vizinhança

de p, são o traço de uma curva regular plana.

Para i = 1, . . . , n − 1, considere αi :]− εi, εi[→ Γp a curva regular p.p.c.a. tal que

αi(0) = p, α′i(0) = Ei e αi(] − εi, εi[) é o traço da curva plana Πp
i ∩ Γp e considere

βi :]− εi, εi[→ Sδ uma curva regular p.p.c.a. tal que βi(0) = p, β′i(0) = Ei e βi(]− εi, εi[) é

o traço da cluva plana Πp
i ∩ Sδ.

Sejam, para i = 1, . . . , n− 1, Ki :]− εi, εi[→ R as curvaturas sobre M de αi em p e

Ti :]− εi, εi[→ R as curvaturas sobre Bδ de βi em p. Por [Lee18, Proposição 8.10, p. 233]

temos, para i = 1, . . . , n− 1, que

|κi| = |I IΓp(Ei, Ei)| = Ki(0) e |τi| = |I ISδ
(Fi, Fi)| = Ti(0),

onde I IΓp é a segunda forma fundamental de Γp e I ISδ
é a segunda forma fundamental

de Sδ.

Portanto, para compararmos as curvaturas principais de Γp em p com as curvaturas

principais das esferas de raio δ em Ur(Γ), basta compararmos as curvaturas das curvas

αi e βi em t = 0.

Assim, reduzimos nosso problema em estudar a seguinte situação: considere uma

curva plana γ :]− a, a[→ R2 arbitrária tal que γ(0) = q e γ′(0) = v. Além disso, existem

duas circunferências de raio r ϕ :]− b, b[→ R2 e ψ :]− c, c[→ R2 tangentes a γ distintas

tais que ϕ(0) = q, ψ(0) = q, ϕ′(0) = v, ψ′(0) = v.
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Em uma vizinhança de q podemos parametrizar γ, ϕ e ψ como gráfico das funções

f , g, h :]− d, d[→ R da seguinte maneira:
γ(s) = (s, f (s))

ϕ(s) = (s, g(s))

ψ(s) = (s, h(s))

.

Note que g(0) = f (0) = h(0), g(x) ≤ f (x) ≤ h(x), ∀x ∈]− d, d[⊂]− d, d[ e f ′(0) = g′(0) =

h′(0). Além disso, 
|γ′′(s)| = | f ′′(s)|

|ϕ′′(s)| = |g′′(s)|

|ψ′′(s)| = |h′′(s)|

Pelo Teorema de Taylor temos, para x ∈]− d, d[, que

f (x) = f (0) + f ′(0)x +
f ′′(0)

2
x2 + r f (x), (68)

onde limx→0
r f (x)

x2 = 0,

g(x) = g(0) + g′(0)x +
g′′(0)

2
x2 + rg(x), (69)

onde limx→0
rg(x)

x2 = 0,

h(x) = h(0) + h′(0)x +
h′′(0)

2
x2 + rh(x), (70)

onde limx→0
rh(x)

x2 = 0. Mas como g(x) ≤ f (x) ≤ h(x), ∀x ∈]− d, d[ temos de (68), (69) e

(70) que h′′(0) ≤ f ′′(0) ≤ g′′(0).

Portanto, como |g′′(0)| = |h′′(0)| =
1
r

, temos que |γ′′(0)| ≤ 1
r

, isto é, a curvatura da

curva γ é limitada superiormente pela curvatura da circunferência.
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3.2 noções de convexidade em variedades
de cartan-hadamard

Nesta seção queremos estabelecer uma relação entre a curvatura total de uma hi-

persuperfície convexa em uma variedade de Cartan-Hadamard n-dimensional com

a curvatura total de uma hipersuperfície d-convexa em uma variedade de Cartan-

Hadamard (n + 1)-dimensional. Para isso, comecemos definindo nossos objetos de

interesse.

Definição 3.27. Sejam (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de

M. Dizemos que X é (geodesicamente) convexo se para todo par de pontos p, q ∈ X existe

uma única geodésica γ :]− ε, ε[→ M tal que γ ([t1, t2]) ⊂ X, γ(t1) = p e γ(t2) = q, com

t1, t2 ∈]− ε, ε[ e t1 < t2.

Definição 3.28. Sejam (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de M

convexo. Dizemos que X é estritamente convexo se para p, q ∈ ∂X não existe uma geodésica

γ :]− ε, ε[→ M tal que γ ([t1, t2]) ⊂ ∂X, γ(t1) = p e γ(t2) = q, com t1, t2 ∈]− ε, ε[ e t1 < t2.

Exemplo 3.29. Note que o subconjunto de X ⊂ R2 dado por X = {(x, y) ∈ R2 : −1 ≤ x ≤
1,−1 ≤ y ≤ 1} é um conjunto convexo mas que não é estritamente convexo. Por outro lado,

o subconjunto Y ⊂ R2 dado por Y = {(x, y) ∈ R2 : x2 + y2 ≤ 1} é um conjunto estritamente

convexo. Como ilustra a Figura 6, onde γi, i = 1, 2, 3, 4, são exemplos de traços de geodésicas.

Figura 6: Um conjunto convexo e um conjunto estritamente convexo.

Definição 3.30. Sejam (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de M

convexo, compacto e com interior não vazio. Chamamos de hipersuperfície convexa a fronteira

∂X de X.
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Definição 3.31. Sejam (M, g) uma variedade Riemanniana e u : M→ R uma função. Dizemos

que u é convexa se para toda geodésica γ :]− ε, ε[→ M e para todos t1, t2 ∈]− ε, ε[, ε > 0,

tais que (1− λ)t1 + λt2 ∈]− ε, ε[ para todo λ ∈ [0, 1] temos que

u ◦ γ ((1− λ)t1 + λt2) ≤ (1− λ)u ◦ γ(t1) + λu ◦ γ(t2). (71)

Além disso, dizemos que u é estritamente convexa se (71) é estrita e dizemos que u é concava

se −u é convexa.

Observação 3.32. Sejam (M, g) uma variedade Riemanniana e u : M → R uma função de

classe C2. Afirmamos que u é convexa se, e somente se, Hess(u) é positiva semi-definida.

De fato, considere γ :]− ε, ε[→ M uma geodésica arbitrária. Assim, u ◦ γ :]− ε, ε[→ R é

convexa se, e somente se, u é convexa. Mas u ◦ γ é convexa se, e somente se, (u ◦ γ)′′ ≥ 0, essa

afirmação é conhecida da análise de funções convexas e segue diretamente do Teorema de Taylor.

Por fim, basta notarmos que (u ◦ γ)′′ ≥ 0 se, e somente se, Hess(u) é positiva semi-definida.

Definição 3.33. Sejam (M, g) uma variedade Riemanniana, X ⊂ M um subconjunto de M e

u : M→ R uma função. Dizemos que u é convexa no conjunto X se u é convexa em todos os

segmentos de geodésica contidos em X.

Novamente vamos relacionar uma propriedade de um subconjunto de uma variedade

de Cartan-Hadamard com uma propriedade da função distância a este subconjunto,

neste caso a propriedade será a convexidade.

Lema 3.34. Seja (M, g) uma variedade de Cartan-Hadamard e X ⊂ M um subconjunto convexo

de M. Então dX é convexa.

Demonstração. Notando que variedades de Cartan-Hadamard são variedades completas,

conexas e com curvatura (seccional) não positiva. Portanto, são espaços CAT(0) e por

[BH99, Corolário 2.5 item 1, p. 178] temos que dX é convexa.

Observação 3.35. Assim, pelo Lema 3.34 podemos provar que uma esfera geodésica é uma

hipersuperfície convexa. Considere (M, g) uma variedade de Cartan-Hadamard e S ⊂ M uma

esfera geodésica.

De fato, Note que S = ∂B, onde B é a bola geodésica correspondente. Logo, se B ⊂ M é

convexa então S é uma hipersuperfície convexa como requerido.

Para mostrarmos que a bola geodésica B ⊂ M é convexa considere B ⊂ M de raio r. Assim,

B = {q ∈ M : dp(q) ≤ r}, onde dp(·) = d(p, ·), além disso, por [BH99, Proposição 2.2, p.
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176], temos que dp é uma função convexa. Portanto, considere p1, p2 ∈ B e γ : [t1, t2]→ M o

segmento de geodésica tal que γ(t1) = p1 e γ(t2) = p2. Note que para todo p ∈ γ([t1, t2]) existe

um λ ∈ [0, 1] tal que γ((1− λ)t1 + λt2) = p. Logo, da convexidade de dp temos que

dp(p) = dp(γ((1− λ)t1 + λ2))

≤ (1− λ)dp(γ(t1)) + λdp(γ(t2))

= (1− λ)dp(p1) + λdp(p2)

≤ (1− λ)r + λr

= r.

Donde segue-se que p ∈ B e, portanto, B é convexo.

O lema anterior relacionou a convexidade de um subconjunto de uma variedade de

Cartan-Hadamard com a convexidade da função distância ao subconjunto, entretanto

podemos estender essa relação para a função distância com sinal.

Seja (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto de M convexo,

limitado e com interior não vazio. Note que se M = Rn temos que d∗∂X é convexa em X.

De fato, sejam x, y ∈ X arbitrários e defina xλ = λx + (1− λ)y, λ ∈ [0, 1], isto é, xλ é

um ponto do segmento de reta que une x e y. Note que xλ ∈ X, pois X é convexo.

Definamos rx = dM\cl(X)(x), ry = dM\cl(X)(y) e rλ = λrx + (1− λ)ry. Note que Brx(x) ⊂
cl(X) e Bry(y) ⊂ cl(X) por definição. Além disso, Brλ

(xλ) ⊂ cl(X).

De fato, considere z ∈ Brλ
(xλ) e definazx = x

zy = y
, se rλ = 0,


zx = x +

rx

rλ
(z− xλ)

zy = y +
ry

rλ
(z− xλ)

, se rλ ̸= 0.

Note que λzx + (1 − λ)zy = z. De fato, se rλ = 0 temos que xλ = z e, portanto,

λzx + (1− λ)zy = λx + (1− λ)y = xλ = z. Por outro lado, se rλ ̸= 0 temos que

λzx + (1− λ)zy = λ

(
x +

rx

rλ
(z− xλ)

)
+ (1− λ)

(
y +

ry

rλ
(z− xλ)

)
= λx + (1− λ)y +

λrx + (1− λ)ry

rλ
(z− xλ)

= xλ +
rλ

rλ
(z− xλ) = z
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Além disso, note que zx ∈ Brx(x) e zy ∈ Bry(y). E, logo, Brλ
(xλ) ⊂ λBrx(x) + (1 −

λ)Bry(y) ⊂ cl(X). Assim, como X é convexo, em particular, temos que

dM\cl(X)(xλ) ≥ dM\Brλ
(xλ)(xλ)

≥ rλ

= λrx + (1− λ)ry

= λdM\cl(X)(x) + (1− λ)dM\cl(X)(y).

Portanto, dM\cl(X)(·) é uma função concava e d∗∂X(·) = dcl(X)(·)− dM\cl(X)(·) = −dM\cl(X)(·)
é uma função convexa.

Mais geralmente, temos por [Sak96, Lema 3.3, p.214-215] que para M, uma variedade

Riemanniana tal que a curvatura de M em X é não negativa, d∗∂X é convexa. Contudo,

se a curvatura de M em X é estritamente negativa, d∗∂X pode não ser convexa; por

exemplo, tome X a região no plano hiperbólico entre um par de geodésicas que não se

intersectam.

Assim, podemos definir o outro objeto de interesse desta seção.

Definição 3.36. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω. Dizemos que Γ é d-convexa se d∗Γ é convexa

em Ω.

Definição 3.37. Sejam (M, g) uma variedade de Cartan-Hadamard. Definimos uma horoesfera

como o limite de uma família de esferas geodésicas cujos raios vão para o infinito, e uma horobola

é o limite da família de bolas correspondentes.

Exemplo 3.38. A Figura 7 ilustra um exemplo de horoesfera S em H2 no modelo de semi-plano

superior.

Figura 7: Horoesfera em H2 no modelo de semi-plano superior.
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Observação 3.39. A função distância a uma horoesfera é uma função de Busemann; que são

funções convexas e de classe C2.

Definição 3.40. Seja (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω. Dizemos que Γ é uma hipersuperfície

h-convexa se para cada ponto de Γ passa uma horoesfera que contém Γ, isto é, Γ está contida na

respectiva horobola.

O próximo lema estabelece uma relação entre a h-convexidade e a d-convexidade de

uma hipersuperfície.

Lema 3.41. Sejam (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

mergulhada em M tal que Γ limita um domínio Ω. Se Γ é h-convexa e C1,1 então Γ é d-convexa.

Demonstração. Seja q ∈ Γ um ponto arbitrário e considere Sq a horoesfera que passa por

q e cuja horobola correspondente Bq é tal que Γ ⊂ Bq.

Seja p ∈ Ω um ponto arbitrário e p0 seu pé da perpendicular em Γ. Considere Sp0 a

horoesfera que passa por q e cuja horobola correspondente Bp0 é tal que Γ ⊂ Bp0 . Então

d∗Γ(p) = dΩ(p)− dM\Ω(p) = −dM\Ω(p) = −dΓ(p) = −d(p, p0) = −dSp0
(p)

= dBp0
(p)− dM\Bp0

(p) = d∗Sp0
(p).

Por outro lado, como Γ ⊂ Bp0 , para todo p ∈ Ω, temos que dΓ(p) ≤ dSq(p). Então

d∗Γ(p) = dΩ(p)− dM\Ω(p) = −dM\Ω(p) = −dΓ(p)

≥ −dSp0
(p) = dBp0

(p)− dM\Bp0
(p) = d∗Sp0

(p).

Portanto, temos que d∗Γ(p) = supq∈Γ d∗Sq
(p), para todo p ∈ Ω. Como d∗Sq

é uma função

de Busemann, d∗Sq
é convexa; donde segue-se que d∗Γ é convexa em Ω. Logo, Γ é

d-convexa.

A volta do Lema 3.41 nem sempre é verdadeira. Por exemplo, para um segmento de

geodésica arbitrário no plano hiperbólico, existe r > 0 tal que a hipersuperfície tubular

de raio r sobre esse segmento é d-convexa, mas não h-convexa.

Então, em resumo, temos, para variedades de Cartan-Hadamard, que

{hs. h− convexas} ⊊ {hs. d− convexas} ⊊ {hs. convexas},

onde hs. é uma abreviação para hipersuperfície.
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Vamos construir uma hipersuperfície d-convexa em uma variedade de Cartan-

Hadamard (n + 1)-dimensional a partir de uma hipersuperfície convexa de uma varie-

dade de Cartan-Hadamard n-dimensional.

Observação 3.42. Sejam (M, g) uma variedade de Cartan-Hadamard, então M ×R com a

métrica produto é uma variedade de Cartan-Hadamard. Além disso, M ⊂ M × R é uma

hipersuperfície totalmente geodésica.

Sejam Γ ⊂ M uma hipersuperfície convexa que limita um domínio convexo Ω e ε > 0.

Considere Γ̃ε a hipersuperfície paralela de Ω em M×R de distância ε, isto é, Γ̃ε = {p ∈ M×R :

(uΩ)−1(ε)}, onde uΩ é a função distância, na variedade M×R, à hipersuperfície Ω.

Afirmamos que Γ̃ε é uma hipersuperfície d-convexa em M×R.

De fato, pelo Lema 3.34 temos que uΩ é convexa. Mas como, ∂Ω = Γ̃ε, com Ω = {p ∈
M×R : uΩ(p) ≤ ε}, temos que u∗

Γ̃ε
é convexa em Ω, pois uΩ é convexa.

Primeiramente, note que para p ∈ Ω e p′ ∈ Γ̃ε o pé da perpendicular de p em Γ̃ε temos que

u∗Γ̃ε
(p) = uΩ(p)− uM×R\Ω(p) = −uM×R\Ω(p)

= −(uΩ(p′)− uΩ(p)) = uΩ(p)− ε.

Assim, considere p1, p2 ∈ Ω e γ : [t1, t2]→ M×R a geodésica tal que γ(t1) = p1, γ(t2) = p2

e γ([t1, t2]) ⊂ Ω. Tome p ∈ γ([t1, t2]) arbitrário tal que γ((1− λ)t1 + λt2) = p, λ ∈ [0, 1].

Logo, como uΩ é convexa,

u∗Γ̃ε
◦ γ((1− λ)t1 + λt2) = u∗Γ̃ε

(p) = uΩ(p)− ε = (uΩ ◦ γ((1− λ)t1 + λt2))− ε

≤ ((1− λ)uΩ ◦ γ(t1) + λuΩ ◦ γ(t2))− ε

= ((1− λ)uΩ(p1) + λuΩ(p2))− ε

= ((1− λ)(u∗Γ̃ε
(p1) + ε) + λ(u∗Γ̃ε

(p2) + ε))− ε

= ((1− λ)u∗Γ̃ε
(p1) + λu∗Γ̃ε

(p2)) + ε− λε + λε− ε

= (1− λ)u∗Γ̃ε
(p1) + λu∗Γ̃ε

(p2)

= (1− λ)u∗Γ̃ε
◦ γ(t1) + λu∗Γ̃ε

◦ γ(t2)

Portanto, u∗
Γ̃ε

é convexa em X e, consequentemente, Γ̃ε é uma hipersuperfície d-convexa em

M×R.

A próxima proposição estabelece a relação desejada, isto é, uma relação entre a cur-

vatura total de uma hipersuperfície convexa em uma variedade de Cartan-Hadamard
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n-dimensional com a curvatura total de uma hipersuperfície d-convexa em uma varie-

dade de Cartan-Hadamard (n + 1)-dimensional.

Proposição 3.43. Sejam (M, g) uma variedade de Cartan-Hadamard n-dimensional, Γ ⊂ M

uma hipersuperfície convexa C2 que limita um domínio convexo Ω e Γ̃ε a hipersuperfície paralela

de Ω em M×R de distância ε. Então, quando ε→ 0,

G
(

Γ̃ε

)
vol (Sn)

→ G (Γ)
vol (Sn−1)

.

Em particular, se G
(

Γ̃ε

)
≥ vol (Sn) então G (Γ) ≥ vol

(
Sn−1)

Note que para M = Rn, pelo Teorema de Gauss-Bonnet, temos que a curvatura

total de uma hipersuperfície convexa n-dimensional é igual ao volume de uma esfera

n-dimensional. Logo a Proposição 3.43 é valida quando M = Rn.

Note que vol
(
Sn−1) = nωn, onde ωn = vol (Bn) =

πn/2

(n/2)!
=

πn/2

G
(n

2
+ 1
) e G é a função

gama.

Demonstração da Proposição 3.43. Sejam q ∈ Γ̃ε e p ∈ cl (Ω) = Ω ∩ Γ o único pé da

perpendicular de q em cl (Ω).

Se p ∈ Ω então existe uma vizinhança aberta U de q ∈ Γ̃ε contida em M × {ε}
ou em M × {−ε}, como ilustra a Figura 8. Disso temos que GKε(q) = 0, pois cada

hipersuperfície M × {t} ⊂ M ×R é totalmente geodésica, isto implica que Sε
q(X) =

∇X Ñ = 0, onde X ∈ TpΓ̃ε e Ñ é o normal para fora de Γ̃ε.

Figura 8: M× {ε} e M× {−ε}.

Portanto, a única contribuição para G
(

Γ̃ε

)
vem dos pontos q ∈ Γ̃ε cujo pé da perpen-

dicular está em Γ. Essa parte de Γ̃ε é a metade de fora do tubo de raio ε ao redor de Γ, o

qual denotaremos por tube+
ε (Γ).
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Assim, temos que G
(

Γ̃ε

)
= G (tube+

ε (Γ)).

Definamos αn =
vol (Sn)

vol (Sn−1)
. Disso segue-se que

αn =
vol (Sn)

vol (Sn−1)

=
(n + 1)ωn+1

nωn

=
n + 1

n
πn/2π1/2

G
(

n + 1
2

+ 1
) G

(n
2

+ 1
)

πn/2

=
n + 1

n

π1/2(n/2)G
(n

2

)
((n + 1)/2) G

(
n + 1

2

)

=
G
(

1
2

)
G
(n

2

)
G
(

1
2

+
n
2

)
= B

(
1
2

,
n
2

)
= 2

∫ π/2

0
cosn−1(θ)dθ

=
∫ π/2

−π/2
cosn−1(θ)dθ, (72)

onde B é a função beta. Portanto, é suficiente mostrar que, quando ε→ 0, temos

G (tube+
ε (Γ))→ αnG(Γ).

Para isso considere N o normal unitário de Γ que aponta para fora com respeito a Ω em

M, N⊥ o normal unitário ortogonal a M em M×R e defina f ε : Γ×R→ M×R por

f ε(p, θ) = expM×R
p (εN(p)(θ)),

onde N(p)(θ) = cos(θ)N(p) + sin(θ)N⊥(p). Assim, definimos

tube+
ε (Γ) = f ε (Γ× [−π/2, π/2]) .

A Figura 9 ilustra o tube+
ε (Γ).
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Figura 9: tube+
ε (Γ).

Note que tube+
ε (Γ) ⊂ d−1

Γ (ε), onde dΓ é a função distância a Γ em M×R. Portanto,

como Γ é C2, temos pelo Lema 3.19 que dΓ é C2. Donde temos que tube+
ε (Γ) é C2. Então

o operador forma de tube+
ε (Γ) está bem definido.

Por [GT14, Corolário 2.2 p. 123] temos que o operador forma de tube+
ε (Γ) no ponto

f ε(p, θ) na direção de N(p)(θ) é dado por

Sε
p,θ =

(
Sp,θ +O(ε) O(ε)

O(ε) 1/ε +O(ε)

)
, (73)

onde O(ε)→ 0 quando ε→ 0 e Sp,θ é operador forma de Γ em p na direção de N(p)(θ).

Note que o operador forma em [GT14] e [Gra00] tem sinal oposto ao utilizado na

Definição 2.82.

Os autovalores de Sp,θ são κi(p)cos(θ) onde κi(p) são as curvaturas principais de Γ em

p.

De fato, sejam κi(p) as curvaturas principais de Γ em p e Ei(p) as direções principais

de Γ em p. Considere Sp o operador forma de Γ em p na direção de N(p). Note que o

operador Sp é dado por Sp(X) = ∇X N(p), onde X ∈ TpΓ. Além disso, temos que

κi(p) = ⟨Sp(Ei(p)), Ei(p)⟩.

Portanto, temos que para X ∈ TpΓ

Sp,θ(X) = ∇X N(p)(θ)

= ∇X(cos(θ)N(p) + sin(θ)N⊥(p))

= ∇X(cos(θ)N(p)) +∇X(sin(θ)N⊥(p))

= cos(θ)∇X N(p) + sin(θ)∇X N⊥(p)
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= cos(θ)Sp(X).

Logo, obtemos que

Sp,θ(Ei(p)) = cos(θ)Sp(Ei(p)) = cos(θ)κi(p)Ei(p).

Ou seja, κi(p)cos(θ) são os autovalores de Sp,θ cujos respectivos autovetores são Ei(p).

Então, disso segue-se que a curvatura de Gauss-Kronecker de tube+
ε (Γ) no ponto

f ε(p, θ) é dada por

GKε(p, θ) = det(Sε
p,θ)

=
1
ε

det(Sp,θ) +
1
ε
O(ε) + det(Sp,θ)O(ε) +O(ε)O(ε)−O(ε)O(ε)

=
1
ε

det(Sp,θ) +O(1) + det(Sp,θ)O(ε),

onde O(1) converge para uma constante quanto ε→ 0. Além disso, afirmamos que

Jac( f ε)(p,θ) = ε +O(ε2), (74)

onde Jac( f ε)(p,θ) é o elemento de área infinitesimal de tube+
ε (Γ). Então, disso temos,

quando ε→ 0, que

G(tube+
ε (Γ)) =

∫
tube+

ε (Γ)
GKεdµε

=
∫ π/2

−π/2

∫
p∈Γ

GKε Jac( f ε)(p,θ)dµdθ

=
∫ π/2

−π/2

∫
p∈Γ

(
1
ε

det(Sp,θ) +O(1) + det(Sp,θ)O(ε)
)(

ε +O(ε2)
)

dµdθ

=
∫ π/2

−π/2

∫
p∈Γ

det(Sp,θ) + εO(1) + εdet(Sp,θ)O(ε) + GKεO(ε2)dµdθ

→
∫ π/2

−π/2

∫
p∈Γ

GK(p)cosn−1(θ)dµdθ

= αnG(Γ),

como desejado. Portanto, basta provarmos (74). Por [Gra00, Lema 3.12, p.41] temos que

Area(tube+
ε ) =

1
2

∫
Γ

∫
S1

εvu(ε)dudΓ,

onde Area(tube+
ε ) é área do tube+

ε e vu(ε) é dado por [Gra00, Lema 3.9 item (iii), p. 38 e

Teorema 3.11, p. 39], da seguinte maneira:

v′u(ε)
vu(ε)

= −1
ε

+ trace
(

Sε
p,θ

)
e vu(0) = 1.
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Portanto,

Jac( f ε)(p,θ) = εvu(ε).

Mas, por (73), temos que

trace
(

Sε
p,θ

)
= trace

(
Sp,θ

)
+

1
ε

+O(ε).

Donde temos que

v′u(ε)
vu(ε)

= −1
ε

+ trace
(
Sp,θ

)
+

1
ε

+O(ε) = trace
(
Sp,θ

)
+O(ε) = O(1).

Consequentemente, pelo Teorema Fundamental do Cálculo e pela série de Taylor da

exponencial temos que

v′u(ε)
vu(ε)

= O(1)∫ ε

0

v′u(t)
vu(t)

dt =
∫ ε

0
O(1)dt

ln(vu(ε))− ln(vu(0)) = O(t)|ε0 = O(ε)

ln(vu(ε)) = O(ε)

vu(ε) = eO(ε) = 1 +O(ε),

o que implica em

Jac( f ε)(p,θ) = εO(ε) = ε(1 +O(ε)) = ε +O(ε2),

como desejado.

Corolário 3.44. Sejam (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

d-convexa C2 que limita um domínio convexo Ω tal que

G(Γ) ≥ vol(Sn−1)

então para ∆ ⊂ M uma hipersuperfície convexa C2 que limita um domínio convexo Ω temos que

G(∆) ≥ vol(Sn−1)

Corolário 3.45. Sejam (M, g) uma variedade de Cartan-Hadamard n-dimensional e Γ ⊂ M

uma hipersuperfície d-convexa C2 que limita um domínio convexo Ω tal que

G(Γ) ≥ vol(Sn−1)

então para N uma variedade de Cartan-Hadamard k-dimensional, k ≤ n, e ∆ ⊂ N uma

hipersuperfície convexa C2 que limita um domínio convexo Ω temos que

G(∆) ≥ vol(Sn−1)
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3.3 uma fórmula de comparação

Nesta seção queremos encontrar uma fórmula de comparação para a curvatura total de

hipersuperfícies.

Seja (M, g) uma variedade Riemanniana n-dimensional e u : M→ R uma função de

classe C1,1 em M. Então, pelo Teorema de Rademacher, u é duas vezes diferenciável em

quase todo ponto de M.

Sejam p ∈ M um ponto no qual u seja duas vezes diferenciável e Ei, i = 1, . . . , n,

um campo referencial ortogonal suave em uma vizinhança V de p. O gradiente de

u em U é dado por grad(u) = uiEi e o operador hessiana de u em p aplicado em

um campo X ∈ X (M), cujas coordenadas são dadas por X = ∑n
i=1 XiEi, é dado por

∇2(u)(X) = uijX jEi, onde

ui = ⟨grad(u), Ei⟩ e uij = Hess(u)(Ei, Ej). (75)

Por outro lado, temos também que

uij = Hess(u)(Ei, Ej)

= ⟨∇Ei grad(u), Ej⟩

= ⟨∇Ei ukEk, Ej⟩

= ⟨uk∇Ei Ek + Ei(uk)Ek, Ej⟩

= uk⟨∇Ei Ek, Ej⟩ + Ei(uk)⟨Ek, Ej⟩

= Ei(uk)δkj + ⟨∇Ei Ek, Ej⟩uk

= Ei(uj) + ⟨∇Ei Ek, Ej⟩uk

= Ej(ui) + ⟨∇Ej Ek, Ei⟩uk

= Ej(ui) +
(

Ej⟨Ek, Ei⟩ − ⟨∇Ej Ei, Ek⟩
)

uk

= Ej(ui)− ⟨∇Ej Ei, Ek⟩uk (76)

Podemos assumir que (∇Ej Ei)(p) = ∇Ej Ei(p) = 0, isto é, Ei é um referencial geodésico

em p. Então, por (76) temos que

uij(p) = (Ej(ui)− ⟨∇Ej Ei, Ek⟩uk)(p)

= (Ej(ui))(p) + ⟨∇Ej Ei(p), Ek(p)⟩uk(p)

= (Ej(ui))(p) (77)
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O cofator de uma matriz quadrada (aij) é a matriz (aij) dada por (−1)i+j vezes o

determinante da matriz obtida removendo-se a i-ésima linha e a j-ésima coluna de (aij).

Definição 3.46. Seja (uij) dada por (75). Defina o operador de cofator associado a hessiana

de u por T u : TpM→ TpM dado por (T u
ij ) = (uij).

Observação 3.47. Note que se o operador hessiana∇2(u) é não degenerado então (∇2(u))−1(X) =

uijV jEi, onde (uij) = (uij)−1. Note também que ∇2(u) = (uij) é simétrica. Da álgebra linear,

para uma matriz quadrada invertível, temos que CT = det(A)A−1, onde CT é a transposta da

matriz de cofatores da matriz A. Logo,

(T u
ij ) = (uij)

= (det((uij))(uij))T

= det(∇2(u))(uij)

= det(∇2(u))(∇2(u))−1. (78)

Nesse caso, temos que

T u(X) = (T u
ij )X jEi = det(∇2(u))(∇2(u))−1(X) (79)

Definição 3.48. Sejam (M, g) uma variedade Riemanniana, p ∈ M um ponto arbitrário e

u : M → R uma função de classe C1 em uma vizinhança de p tal que grad(u) ̸= 0. Dizemos

que o conjunto Γ = {q ∈ M : u(q) = u(p)} = u−1(u(p)) é o conjunto de nível regular de u

próximo a p.

Vamos relacionar as curvaturas principais de um conjunto de nível regular de uma

função com os coeficientes da matriz hessiana desta mesma função.

Observação 3.49. Sejam (M, g) uma variedade Riemanniana n-dimensional, p ∈ M um ponto

arbitrário e u : M→ R uma função de classe C1 em uma vizinhança de p tal que grad(u) ̸= 0.

Considere Γ o conjunto de nível regular de u próximo a p. Note que
grad(u)
|grad(u)| gera um campo

vetorial normal a Γ próximo a p.

Considere El, l = 1, . . . , n− 1, as direções principais de Γ em p. Então κl, l = 1, . . . , n− 1,

as correspondentes curvaturas principais de Γ em p com respeito a
grad(u)
|grad(u)| , são dadas, para

l = 1, . . . , n− 1, por:

κl =
(
∇El

(
grad(u)
|grad(u)|

))T
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=
〈
∇El

(
grad(u)
|grad(u)|

)
, El

〉
=

1
|grad(u)|

〈
∇El grad(u), El

〉
=

1
|grad(u)|Hess(u)(El , El)

=
ull

|grad(u)| (80)

Lema 3.50. Sejam (M, g) uma variedade Riemanniana n-dimensional, p ∈ M um ponto

arbitrário e u : M→ R uma função de classe C1,1 em uma vizinhança de p tal que grad(u) ̸= 0.

Considere Γ o conjunto de nível regular de u próximo a p. Suponha que Γ seja duas vezes

diferenciável em p. Então a curvatura de Gauss-Kronecker de Γ em p com respeito a
grad(u)
|grad(u)| é

dada por

GK =
⟨T u(grad(u)), grad(u)⟩

|grad(u)|n+1 .

Demonstração. Seja Ei, i = 1, . . . , n, um referencial ortonormal para TpM tal que El,

l = 1, . . . , n− 1, são as direções principais de Γ em p. Note que, para i ̸= j, temos que

uij = Hess(u)(Ei, Ej)

= ⟨∇Ei grad(u), Ej⟩

= ⟨Sp(Ei), Ej⟩

= ⟨κiEi, Ej⟩

= κi⟨Ei, Ej⟩

= 0,

onde κi é a curvatura principal associada a direção principal Ei, i = 1, . . . , n− 1.

Logo, as submatrizes principais (n− 1)× (n− 1) da matriz (uij) são matrizes diagonais.

Assim,

T u
nn = (unn) = Πn−1

l=1 ull .

Além disso, como En é ortogonal a Γ, e Γ é o conjunto de nível de u, grad(u) é paralelo

a ±En. Portanto, un = ⟨grad(u), En⟩ = ±|grad(u)|.
Portanto,

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 =

⟨(T u
ij )ujEi, ukEk⟩
|grad(u)|n+1

=
(T u

ij )ujuk⟨Ei, Ek⟩
|grad(u)|n+1



90 uma fórmula de comparação para a curvatura total do envoltório convexo

=
(T u

ij )ujukδik

|grad(u)|n+1

=
(T u

ij )ujui

|grad(u)|n+1

Mas como, para i ̸= j, temos que uij = 0 segue-se que (T u
ij ) = (uij) = 0 para i ̸= j. Logo,

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 =

(T u
ij )ujui

|grad(u)|n+1

=
(T u

ii )uiui

|grad(u)|n+1

Por outro lado, note que para i ̸= n temos que ui = ⟨grad(u), Ei⟩ = ±⟨En, Ei⟩ = 0. Assim,

como T u
nn = Πn−1

l=1 ull, un = ±|grad(u)| e de (80) temos que

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 =

(T u
nn)unun

|grad(u)|n+1

=
Πn−1

l=1 ull|grad(u)|2

|grad(u)|n+1

=
1

|grad(u)|n−1 Πn−1
l=1 ull

= Πn−1
l=1

ull
|grad(u)|

= Πn−1
l=1 κl

= GK,

onde κl, l = 1, . . . , n − 1, são as curvaturas principais correspondentes as direções

principais El, l = 1, . . . , n− 1.

Seja (M, g) uma variedade Riemanniana n-dimensional, p ∈ M um ponto arbitrário

de M e U ⊂ M uma vizinhança de p. Considere X ∈ X(U) um campo de vetores em

U. Tome Ei, i = 1, . . . , n um referencial geodésico em p e escreva X = X jEj. Assim, a

divergência do campo de vetores T u(X) em p é dada por:

divp(T u(X)) =
n

∑
k=1
⟨∇EkT

u(X), Ek⟩(p)

=
n

∑
k=1
⟨∇Ek(T u

ij )X jEi, Ek⟩(p)

=
n

∑
k=1
⟨Ek((T u

ij )X j)Ei + (T u
ij )X j∇Ek Ei, Ek⟩(p)
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=
n

∑
k=1

Ek((T u
ij )X j)(p)⟨Ei(p), Ek(p)⟩ +

n

∑
k=1

(T u
ij )X j(p)⟨∇Ek Ei(p), Ek(p)⟩

=
n

∑
k=1

Ek((T u
ij )X j)(p)δik

= Ei((T u
ij )X j)(p) (81)

Definição 3.51. Seja (M, g) uma variedade Riemanniana, u : M → R uma função de classe

C1,1 em M tal que u é duas vezes diferenciável em p ∈ M. Considere Ei, i = 1, . . . , n um

referencial geodésico para TpM e T u o operador cofator associado a hessiana de u. Definimos a

divergência de T u por

divp(T u) = Ei(T u
ij )(p)Ej(p). (82)

Lema 3.52. Sejam (M, g) uma variedade Riemanniana n-dimensional, p ∈ M um ponto

arbitrário e u : M → R uma função três vezes diferenciável em p, grad(u)(p) ̸= 0 e ∇2(u)(p)

não degenerada. Então

divp

(
T u
(

grad(u)
|grad(u)|n

))
=
〈

divp(T u),
grad(u)
|grad(u)|n

〉
. (83)

Demonstração. Considere Ei, i = 1, . . . , n um referencial geodésico em p e note que

grad(u) = ujEj, j = 1, . . . , n, onde uj, j = 1, . . . n, é dado por (75). De (81) temos que,

divp

(
T u
(

grad(u)
|grad(u)|n

))
= Ei

(
(T u

ij )
uj

|grad(u)|

)
(p). (84)

Por outro lado, pela Definição 3.51 temos que,〈
divp(T u),

grad(u)
|grad(u)|n

〉
=
〈

Ei(T u
ij )(p)Ej(p),

ukEk(p)
|grad(u)|n

〉
= Ei(T u

ij )(p)
uk

|grad(u)|n
〈

Ej(p), Ek(p)
〉

= Ei(T u
ij )(p)

uk
|grad(u)|n

〈
Ej, Ek

〉
(p)

= Ei(T u
ij )(p)

uk
|grad(u)|n δkj

= Ei(T u
ij )(p)

uj

|grad(u)|n . (85)

Portanto, de (84) e (85) temos que basta provarmos que

Ei

(
(T u

ij )
uj

|grad(u)|

)
(p) = Ei(T u

ij )(p)
uj

|grad(u)|n .



92 uma fórmula de comparação para a curvatura total do envoltório convexo

Note que, pela regra do produto, temos que

Ei

(
(T u

ij )
uj

|grad(u)|

)
(p) = Ei(T u

ij )(p)
uj

|grad(u)| + T u
ij

(
Ei

(
uj

|grad(u)|

))
(p).

Assim, basta provarmos que T u
ij

(
Ei

(
uj

|grad(u)|

))
(p) = 0.

De fato,

T u
ij

(
Ei

(
uj

|grad(u)|

))
(p) = T u

ij

(
Ei(uj)
|grad(u)|n + ujEi

(
1

|grad(u)|n

))
(p)

= T u
ij

(
Ei(uj)(p)
|grad(u)|n + uj

−n⟨grad(u),∇Ei grad(u)⟩(p)
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − nuj

⟨ukEk,∇Ei ulEl⟩(p)
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − nujuk

⟨Ek, ul∇Ei El + Ei(ul)El⟩(p)
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − nujuk

⟨Ek(p), ul∇Ei El(p) + Ei(ul)(p)El(p)⟩
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − nujuk

⟨Ek(p), Ei(ul)(p)El(p)⟩
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − nujukEi(ul)(p)

⟨Ek, El⟩(p)
|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − n

ujukEi(ul)(p)δkl

|grad(u)|n+2

)
= T u

ij

(
Ei(uj)(p)
|grad(u)|n − n

ujukEi(uk)(p)
|grad(u)|n+2

)
.

Por (77) temos que Ei(uj)(p) = uji(p) e Ei(uk)(p) = uki(p). Logo,

T u
ij

(
Ei

(
uj

|grad(u)|

))
(p) = T u

ij

(
Ei(uj)(p)
|grad(u)|n − n

ujukEi(uk)(p)
|grad(u)|n+2

)
= T u

ij

(
uji(p)
|grad(u)|n − n

ujukuki(p)
|grad(u)|n+2

)
= T u

ij

(
uji

|grad(u)|n − n
ujukuki

|grad(u)|n+2

)
(p)

Mas como (T u
ij ) = det(uij)(uij)−1 temos que

T u
ij

(
Ei

(
uj

|grad(u)|

))
(p) = T u

ij

(
uji

|grad(u)|n − n
ujukuki

|grad(u)|n+2

)
(p)

= det(uij)(uij)−1
(

uji

|grad(u)|n − n
ujukuki

|grad(u)|n+1

)
(p)
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= n
det(uij)
|grad(u)|n − n

ujukδkjdet(uij)
|grad(u)|n+2

= n
det(uij)
|grad(u)|n − n

ujujdet(uij)
|grad(u)|n+2

= n
det(uij)
|grad(u)|n − n

det(uij)
|grad(u)|n

= 0.

Definição 3.53. Sejam (M, g) uma variedade Riemanniana e p ∈ M um ponto arbitrário.

Dizemos que p é um ponto regular de uma função u : M → R se u é de classe C1 em uma

vizinhança aberta de p e grad(u)(p) ̸= 0.

Definição 3.54. Sejam (M, g) uma variedade Riemanniana e u : M→ R uma função. Dizemos

que x ∈ R é um valor regular de u se todo p ∈ u−1(x) é um ponto regular de u.

Definição 3.55. Sejam (M, g) uma variedade Riemanniana, u : M→ R uma função e x ∈ R

um valor regular de u. Dizemos que o conjunto u−1(x) ⊂ M é conjunto de nível regular de

u.

Lema 3.56. Sejam (M, g) uma variedade Riemanniana, u : M→ R uma função, Γ ⊂ M um

conjunto de nível regular de u que limita um domínio Ω e γ ⊂ M outro conjunto de nível

regular de u que limita um domínio D tal que D ⊂ Ω. Considere que u é de classe C2,1 em

cl(Ω) \D e grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus correspondentes

domínios. Além disso, assuma que |grad(u)| ̸= 0 e ∇2(u) é não degenerada em quase todo ponto

p ∈ cl(Ω) \ D. Seja dµ a medida de volume Riemanniano n-dimensional em M e dσ a medida

de volume Riemanniana (n− 1)-dimensional ou a medida de área de uma hipersuperfície. Então

G(Γ)− G(γ) =
∫

Ω\D

〈
div(T u),

grad(u)
|grad(u)|n

〉
dµ.

Demonstração. Primeiramente, note que, pelo Lema 3.52 temos que〈
divp(T u),

grad(u)
|grad(u)|n

〉
= divp

(
T u
(

grad(u)
|grad(u)|n

))
.

Logo, temos que,∫
Ω\D

〈
div(T u),

grad(u)
|grad(u)|n

〉
dµ =

∫
Ω\D

divp

(
T u
(

grad(u)
|grad(u)|n

))
dµ.
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Pelo Teorema da divergência, temos que∫
Ω\D

〈
div(T u),

grad(u)
|grad(u)|n

〉
dµ =

∫
Ω\D

divp

(
T u
(

grad(u)
|grad(u)|n

))
dµ

=
∫

∂(Ω\D)

〈
T u
(

grad(u)
|grad(u)|n

)
, ν

〉
dσ

=
∫

Γ∪γ

〈
T u
(

grad(u)
|grad(u)|n

)
, ν

〉
dσ,

onde ν é o normal para fora de ∂(Ω \ D) = Γ ∪ γ. Note que ν =
grad(u)
|grad(u)| em Γ e

ν = − grad(u)
|grad(u)| em γ. Assim,

∫
Ω\D

〈
div(T u),

grad(u)
|grad(u)|n

〉
dµ =

∫
Γ∪γ

〈
T u
(

grad(u)
|grad(u)|n

)
, ν

〉
dσ

=
∫

Γ

〈
T u
(

grad(u)
|grad(u)|n

)
,

grad(u)
|grad(u)|

〉
dσ+

+
∫

γ

〈
T u
(

grad(u)
|grad(u)|n

)
,− grad(u)
|grad(u)|

〉
dσ

=
∫

Γ

〈
T u
(

grad(u)
|grad(u)|n

)
,

grad(u)
|grad(u)|

〉
dσ−

−
∫

γ

〈
T u
(

grad(u)
|grad(u)|n

)
,

grad(u)
|grad(u)|

〉
dσ

=
∫

Γ

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 dσ−

−
∫

γ

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 dσ.

Mas, pelo Lema 3.50 temos que GK(p) =
⟨T u(grad(u)), grad(u)⟩

|grad(u)|n+1 . Portanto,

∫
Ω\D

〈
div(T u),

grad(u)
|grad(u)|n

〉
dµ =

∫
Γ

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 dσ−

−
∫

γ

⟨T u(grad(u)), grad(u)⟩
|grad(u)|n+1 dσdσ

=
∫

Γ
GK(p)dσ−

∫
γ

GK(q)dσ

= G(Γ)− G(γ).
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Observação 3.57. Seja (M, g) uma variedade Riemanniana n-dimensional e u : M→ R uma

função de classe C1,1 em M. Então, pelo Teorema de Rademacher, u é duas vezes diferenciável em

quase todo ponto de M.

Sejam p ∈ M um ponto no qual u seja duas vezes diferenciável e Ei, i = 1, . . . , n, um campo

referencial ortogonal suave em uma vizinhança V de p.

Note que

Ei(det(∇2(u))) = Ei(T u
rl url) = T u

rl Ei(url) = T u
rl urli, (86)

onde urki = Ei(urk). Note também que, pela expressão do tensor de Riemann R em coordenadas e

como [Ei, Ej] = 0, temos

urik − urki = Ek(uri)− Ei(urk) = Ek(Ei(ur))− Ei(Ek(ur)

= ∇Ek∇Ei ur −∇Ei∇Ek ur +∇[Ei ,Ek]ur

= R(Ei, Ek)(ur) = Rl
kirul = Rkirmgmlul = Rkirm⟨Em, El⟩ul

= Rkirmδmlul = Rkirlul . (87)

Lema 3.58. Sejam (M, g) uma variedade Riemanniana, u : M→ R uma função, Γ ⊂ M um

conjunto de nível regular de u que limita um domínio Ω. Considere que u é de classe C2,1 em Ω.

Além disso, assuma que |grad(u)| ̸= 0 e ∇2(u) é não degenerada em quase todo ponto p ∈ Ω.

Seja p ∈ Ω um ponto no qual u é três vezes diferenciável. Considere Ei um referencial ortogonal

em p ∈ Ω então

⟨div(T u), grad(u)⟩ =
R(T u(grad(u)), T u(Ei), Ei, grad(u))

det(∇2(u))

=
R(T u(grad(u)), Ei, T u(Ei), grad(u))

det(∇2(u))
.

Demonstração. Pela Definição 3.51 e por (75) temos que

⟨div(T u), grad(u)⟩ = ⟨Ei(T u
ij )Ej, ukEk⟩ = Ei(T u

ij )uk⟨Ej, Ek⟩ = Ei(T u
ij )uj. (88)

De (78) temos que

Ei(T u
ij ) = Ei(uijdet(∇2(u)) = Ei(uij)det(∇2(u)) + uijEi(det(∇2(u))). (89)

Agora, note que uirurkukj = δikukj = uij. Logo, temos que

Ei(uij) = Ei(uirurkukj) = Ei(uir)urkukj = −uirEi(uir)uirurkukj = −uirEi(uir)uij. (90)

Reindexando (90) para i→ k obtemos

Ei(uij) = −uirEi(uir)uij = −uirEi(ukr)ukj = −uirukjEi(urk) = −uirukjurki. (91)
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Substituindo (91) e (86) em (89) e usando (78), obtemos

Ei(T u
ij ) = Ei(uij)det(∇2(u)) + uijEi(det(∇2(u)))

= −uirukjurkidet(∇2(u)) + uijT u
rl urli

= uijdet(∇2(u))urlurli − uirukjurkidet(∇2(u))

= det(∇2(u))(uijurlurli − uirukjurki). (92)

Reindexando (92) para i→ k e l → i e usando (87) obtemos

Ei(T u
ij ) = det(∇2(u))(uijurlurli − uirukjurki)

= det(∇2(u))(ukjuriurik − uirukjurki)

= det(∇2(u))uirukj(urik − urki)

= det(∇2(u))uirukjRkirlul . (93)

Substituindo (93) em (88) obtemos

⟨div(T u), grad(u)⟩ = Ei(T u
ij )uj

= det(∇2(u))uirukjRkirluluj

= det(∇2(u))uirukjR(Ek, Ei, Er, ulEl)uj

= det(∇2(u))R(ukjEkuj, Ei, uirEr, ulEl)

= det(∇2(u))R(ujkEkuj, Ei, uirEr, ulEl) (94)

Por (78) e (79) temos que uirEr =
(T u

ir )Er

det(∇2(u))
=
T u(Ei)

det(∇2(u))
e ujkEkuj =

(T u
jk )ujEk

det(∇2(u))
=

T u(grad(u))
det(∇2(u))

. Portanto, usando isso em (94) obtemos

⟨div(T u), grad(u)⟩ = det(∇2(u))R(ujkEkuj, Ei, uirEr, ulEl)

= det(∇2(u))R
(
T u(grad(u))
det(∇2(u))

, Ei,
T u(Ei)

det(∇2(u))
, grad(u)

)
=

R(T u(grad(u)), Ei, T u(Ei), grad(u))
det(∇2(u))

. (95)

Por fim, multiplicando (94) por uliuli = I e depois reindexando por l → i obtemos

⟨div(T u), grad(u)⟩ = det(∇2(u))R(ujkEkuj, Ei, uirEr, ulEl)

= det(∇2(u))uliuliR(ujkEkuj, Ei, uirEr, ulEl)
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= det(∇2(u))R(ujkEkuj, uliEi, uliuirEr, ulEl)

= det(∇2(u))R(ujkEkuj, uliEi, δlrEr, ulEl)

= det(∇2(u))R(ujkEkuj, uliEi, El , ulEl)

= det(∇2(u))R
(
T u(grad(u))
det(∇2(u))

,
T u(El)

det(∇2(u))
, El , grad(u)

)
= det(∇2(u))R

(
T u(grad(u))
det(∇2(u))

,
T u(Ei)

det(∇2(u))
, Ei, grad(u)

)
=

R(T u(grad(u)), T u(Ei), Ei, grad(u))
det(∇2(u))

(96)

Portanto, por (95) e (96) temos o requerido.

Corolário 3.59. Sejam (M, g) uma variedade Riemanniana, u : M→ R uma função, Γ ⊂ M

um conjunto de nível regular de u que limita um domínio Ω e γ ⊂ M outro conjunto de nível

regular de u que limita um domínio D tal que D ⊂ Ω. Considere que u é de classe C2,1 em

cl(Ω) \D e grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus correspondentes

domínios. Além disso, assuma que |grad(u)| ̸= 0 e ∇2(u) é não degenerada em quase todo

ponto p ∈ cl(Ω) \ D. Seja dµ a medida de volume Riemanniano n-dimensional em M e dσ a

medida de volume Riemanniana (n− 1)-dimensional ou a medida de área de uma hipersuperfície.

Considere Ei um referencial ortogonal em p ∈ Ω então

G(Γ)− G(γ) =
∫

Ω\D

R(T u(grad(u)), T u(Ei), Ei, grad(u))
|grad(u)|ndet(∇2(u))

dµ.

Demonstração. A prova é imediatamente dos Lemas 3.56 e 3.58.

Lema 3.60. Seja A uma matriz simétrica n× n, com submatriz principal (n− 1)× (n− 1)

diagonal, dada por 
b1 0 a1

. . . ...

0 bn−1 an−1

a1 . . . an−1 a

 ,

e seja A = (aij) a matriz de cofatores de A. Então

1. ain = −aiΠl ̸=ibl; para i < n.

2. aij = aiajΠl ̸=i,jbl; para i, j < n e i ̸= j.

3. aii = aΠl ̸=ibl −∑k ̸=i a2
kΠl ̸=k,ibl; para i < n.
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4. det(A) = aΠlbl −∑k a2
kΠl ̸=kbl.

5. Para b1, . . . , bn−1 fixados, a tendendo para infinito e |ai| < C (independente de a), os

autovalores de A satisfazem λα = bα + o(1) para α < n e λn = a +O(1), onde o(1) e O(1)

dependem uniformemente somente de b1, . . . , bn−1 e C. Em particular,

det(A) = aΠibi +O(1).

Demonstração. (1): Primeiramente, note que para calcular o cofator do elemento ain,

i < n, temos que calcular o determinante da seguinte matriz subjacente



b1 . . . 0 . . . 0 a1
... . . . ... . . . ...

...

0 . . . bi . . . 0 ai
... . . . ... . . . ...

...

0 . . . 0 . . . bn−1 an−1

a1 . . . ai . . . an−1 a


.

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa

expansão sobre a i-ésima coluna da matriz subjacente mas, por construção, temos que

todos os elementos dessa coluna são nulos a menos do elemento ani = ai. Além disso, a

matriz subjacente ao cálculo desse determinante é diagonal.



b1 . . . 0 . . . 0 a1
... . . . ... . . . ...

...

0 . . . bi . . . 0 ai
... . . . ... . . . ...

...

0 . . . 0 . . . bn−1 an−1

a1 . . . ai . . . an−1 a


.

Portanto,

ain = (−1)i+nani(−1)n−1+iΠl ̸=ibl = (−1)2(n+i)−1aiΠl ̸=ibl = −aiΠl ̸=ibl .
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(2): Primeiramente, note que para calcular o cofator do elemento aij, i, j < n i ̸= j, temos

que calcular o determinante da seguinte matriz subjacente



b1 . . . 0 . . . 0 . . . 0 a1
... . . . ... . . . ... . . . ...

...

0 . . . bi . . . 0 . . . 0 ai
... . . . ... . . . ... . . . ...

...

0 . . . 0 . . . bj . . . 0 aj
... . . . ... . . . ... . . . ...

...

0 . . . 0 . . . 0 . . . bn−1 an−1

a1 . . . ai . . . aj . . . an−1 a


.

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa

expansão sobre a i-ésima coluna da matriz subjacente mas, por construção, temos que

todos os elementos dessa coluna são nulos a menos do elemento ani = ai. Além disso, a

matriz subjacente ao cálculo desse determinante é dada por



b1 . . . 0 . . . 0 . . . 0 a1
... . . . ... . . . ... . . . ...

...

0 . . . bi . . . 0 . . . 0 ai
... . . . ... . . . ... . . . ...

...

0 . . . 0 . . . bj . . . 0 aj
... . . . ... . . . ... . . . ...

...

0 . . . 0 . . . 0 . . . bn−1 an−1

a1 . . . ai . . . aj . . . an−1 a


.

Logo, trocando a j-ésima linha com a (j + 1)-ésima linha. Depois trocando a (j + 1)-

ésima linha com a (j + 2)-ésima linha e, assim, sucessivamente até a (n− 1)-ésima linha

obtemos que fizemos n− 1− j trocas. Portanto,

aij = (−1)i+jai(−1)n−1+i(−1)n−1−jajΠl ̸=i,jbl = (−1)2(n+i−1)aiajΠl ̸=i,jbl = aiajΠl ̸=i,jbl .
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(3): Primeiramente, note que para calcular o cofator do elemento aii, i < n, temos que

calcular o determinante da seguinte matriz subjacente

b1 . . . 0 . . . 0 a1
... . . . ... . . . ...

...

0 . . . bi . . . 0 ai
... . . . ... . . . ...

...

0 . . . 0 . . . bn−1 an−1

a1 . . . ai . . . an−1 a


.

Para isso vamos usar o Teorema de Laplace para calcular o determinante e faremos essa

expansão sobre a (n− 1)-ésima coluna da matriz subjacente. Donde obtemos que

aii = (−1)n−1+n−1aΠl ̸=ibl + ∑
k ̸=i

akakn.

Usando o item (1) do Lema 3.60 temos que akn = −akΠl ̸=kbl. Portanto,

aii = (−1)n−1+n−1aΠl ̸=ibl + ∑
k ̸=i

akakn

= (−1)2(n−1)aΠl ̸=ibl + ∑
k ̸=i

ak
(
−akΠl ̸=kbl

)
= aΠl ̸=ibl −∑

k ̸=i
a2

kΠl ̸=kbl .

(4): Para calcularmos o determinante da matriz A vamos usar o Teorema de Laplace

usando n-ésima coluna para expansão. Assim, obtemos que

det(A) = (−1)n+naΠlbl + ∑
k

akakn.

Usando o item (1) do Lema 3.60 temos que akn = −akΠl ̸=kbl. Portanto,

det(A) = (−1)n+naΠlbl + ∑
k

akakn

= (−1)2naΠlbl + ∑
k

ak
(
−akΠl ̸=kbl

)
= aΠlbl −∑

k
a2

kΠl ̸=kbl .

(5): Primeiramente note que os autovalores λ de A satisfazem que

det


b1 − λ 0 a1

. . . ...

0 bn−1 − λ an−1

a1 . . . an−1 a− λ

 = 0. (97)
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Multiplicando por
1
a

ambos os lados de (97) obtemos que:

det


b1 − λ 0

a1

a
. . . ...

0 bn−1 − λ
an−1

a
a1 . . . an−1 1− λ

a

 = 0.

Como o determinante é uma função contínua, podemos fazer a→ ∞ e obtemos:

det


b1 − λ 0 0

. . . ...

0 bn−1 − λ 0

a1 . . . an−1 1

 = 0.

Donde temos, pelo item (4) do Lema 3.60, que Πn−1
l=1 (bl − λ) = 0. Assim, os números

b1, . . . , bn−1 são raízes simples e, pela dependência contínua das raízes com relação aos

parâmetros do polinômio, temos que λα = bα + o(1) para α < n.

Para achar o último autovalor, fazemos a mudança λ = aµ em (97) e obtemos

det


b1 − aµ 0 a1

. . . ...

0 bn−1 − aµ an−1

a1 . . . an−1 a− aµ

 = 0. (98)

Multiplicando por
1
an ambos os lados de (98) obtemos que:

det



b1

a
− µ 0

a1

a
. . . ...

0
bn−1

a
− µ

an−1

aa1

a
. . .

an−1

a
1− µ


= 0.

Como o determinante é uma função contínua, podemos fazer a→ ∞ e obtemos:

det


−µ 0 0

. . . ...

0 −µ 0

0 . . . 0 1− µ

 = 0.
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Donde temos que (−µ)n−1(1− µ) = 0 e, portanto, µ = 1 é uma raiz simples. Portanto, 1

é uma raiz simples e, pela dependência contínua das raízes com relação aos parâmetros

do polinômio, temos que µ = 1 +O
(

1
a

)
. Ou ainda, λn = a +O(1).

Definição 3.61. Sejam (M, g) uma variedade Riemanniana e u : M→ R uma função de classe

C1. Considere p ∈ M um ponto regular de u. Dizemos que E1, . . . , En ∈ TpM é o referencial

principal de u em p se En = − grad(u)(p)
|grad(u)(p)| e E, . . . , En−1 são as direções principais do

conjunto de nível regular u−1(u(p)) em p com respeito a −En.

Teorema 3.62 (Fórmula de comparação, primeira versão). Sejam (M, g) uma variedade

Riemanniana, u : M → R uma função, Γ ⊂ M um conjunto de nível regular de u que limita

um domínio Ω e γ ⊂ M outro conjunto de nível regular de u que limita um domínio D tal

que D ⊂ Ω. Suponha que grad(u) é o normal para fora ao longo de Γ e γ com respeito aos

seus respectivos domínios. Além disso, suponha que u é de classe C2,1 em cl(Ω) \ D e, em quase

todo ponto de cl(Ω) \ D, grad(u) ̸= 0 e ∇2(eu) é não degenerada. Seja dµ a medida de volume

Riemanniano n-dimensional em M. Então,

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK
κr

dµ +
∫

Ω\D
Rrkrn

GK
κrκk

unk
|grad(u)|dµ,

onde todas as quantidades são calculadas com respeito ao referencial principal de u e k ≤ n− 1.

Demonstração. Considere w(p) = (ϕ ◦ u)(p), onde ϕ(t) =
eth − 1

h
, para h > 0. Note que Γ

e γ serão conjuntos de níveis regulares de w.

De fato, como Γ e γ são conjuntos de níveis regulares de u temos que existem

t1, t2 ∈ R tais que

Γ = {p ∈ M : u(p) = t1} = {p ∈ M : ϕ(u(p)) = ϕ(t1)} = {p ∈ M : w(p) = ϕ(t1)}

e

γ = {p ∈ M : u(p) = t2} = {p ∈ M : ϕ(u(p)) = ϕ(t2)} = {p ∈ M : w(p) = ϕ(t2)}.

Além disso, grad(w) ̸= 0. Primeiro calculemos o gradiente de w. Para p ∈ M e v ∈ TpM

arbitrários temos que

⟨grad(w)(p), v⟩ = ⟨grad(ϕ ◦ u)(p), v⟩

= dp(ϕ ◦ u)(v)

= du(p)ϕ(dpu(v))
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= ϕ′(u(p))(dpu(v))

= ϕ′(u(p))⟨grad(u)(p), v⟩

= ⟨ϕ′(u(p))grad(u)(p), v⟩. (99)

Portanto, grad(w) = ϕ′(u)grad(u), mas como ϕ′(u) = ehu e grad(u) ̸= 0, pois Γ e γ são

conjuntos de níveis regulares, temos que grad(w) ̸= 0.

Além disso, ∇2(w) é não degenerada em quase todo ponto. De fato, para X ∈ X(M) e

usando (99) temos que

∇2(w)(X) = ∇Xgrad(w)

= ∇X(ϕ′(u)grad(u))

= ϕ′(u)∇Xgrad(u) + X(ϕ′(u))grad(u)

= ϕ′(u)∇2(u)(X) + ϕ′′(u)X(u)grad(u)

= ϕ′(u)∇2(u)(X) + hϕ′(u)X(u)grad(u)

= ϕ′(u)
(
∇2(u)(X) + hgrad(u)⟨grad(u), X⟩

)
. (100)

Logo, como ϕ′(u) = ehu, h > 0, grad(u) ̸= 0 e ∇2(u) e não degenerada em quase todo

ponto, temos que ∇2(w) é não degenerada em quase todo ponto.

Assim, do Corolário 3.59 para w, temos que

G(Γ)− G(γ) =
∫

Ω\D

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

dµ. (101)

Seja p um ponto do conjunto de nível {p ∈ M : w(p) = ϕ(t)} e Eα, α = 1, . . . , n, o

referencial principal de w em p. Note que wi(p) = 0, i < n, e |wn| = |grad(w)|.
De fato, como Eα, α = 1, . . . , n, é o referencial principal de w em p, temos que

En = − grad(w)(p)
|grad(w)(p)| e, portanto,

wn = ⟨grad(w), En⟩ = ⟨−|grad(w)|En, En⟩ = −|grad(w)|⟨En, En⟩ = −|grad(w)|.

Donde segue-se que |wn| = |grad(w)|. Por outro lado, para i < n, temos que

wi = ⟨grad(w), Ei⟩ = ⟨−|grad(w)|En, Ei⟩ = −|grad(w)|⟨En, Ei⟩ = 0.

Por (94) e (96) temos que o integrando do lado direito de (101) é dado por

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

=
det(∇2(w))wkjwirRkirlwlwj

|grad(w)|n
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=
det(∇2(w))wknwirRkirnwnwn

|grad(w)|n

=
det(∇2(w))wknwirRkirn

|grad(w)|n−2 . (102)

Note que (wij) = ϕ′(u)(aij), onde aij = uij + huiuj. De fato, por (100), temos que

wij = Hess(w)(Ej, Ej)

= ⟨∇2(w)(Ei), Ej⟩

=
〈

ϕ′(u)
(
∇2(u)(Ei) + hgrad(u)⟨grad(u), Ei⟩

)
, Ej

〉
= ϕ′(u)

(〈
∇2(u)(Ei), Ej

〉
+
〈

hgrad(u)⟨grad(u), Ei⟩, Ej
〉)

= ϕ′(u)
(

Hess(u)(Ei, Ej) + h⟨grad(u), Ei⟩⟨grad(u), Ej⟩
)

= ϕ′(u)(uij + huiuj).

Note também que ui(p) = 0, i < n, e un = −grad(u) analogamente a wi(p) = 0, i < n, e

|wn| = |grad(w)|. Além disso, por (80) temos que ukk = |grad(u)|κk. Disto segue que

(aij) =


|grad(u)|κ1 0 u1n

. . . ...

0 |grad(u)|κn−1 u(n−1)n

u1n . . . u(n−1)n unn + h|grad(u)|2


Seja (aij) a matriz de cofatores de (aij). Note que (wij) = det(∇2(w))wij = ϕ′(u)n−1(aij).

De fato, como para uma matriz quadrada invertível A temos que CT = det(A)A−1,

onde CT é a transposta da matriz de cofatores de A, temos que (wij)T = det(∇2(w))wij;

que implica em (wij) = det(∇2(w))wij. Por outro lado, temos que (wij) = ϕ′(u)(aij) e

multiplicando ambos o lados à direita por (wij) obtemos ϕ′(u)(aij)(wij) = Id, isto é,

(wij) =
(aij)
ϕ′(u)

. Portanto, (wij) = det(∇2(w))(wij) = det(∇2(w))
(aij)
ϕ′(u)

. Por fim, como (wij) =

ϕ′(u)(aij), temos que det(∇2(w)) = det((wij)) = (ϕ′(u))ndet((aij)). Donde concluímos que

(wij) = det(∇2(w))
(aij)
ϕ′(u)

= (ϕ′(u))ndet((aij))
(aij)
ϕ′(u)

= (ϕ′(u))n−1(aij).

Por (99) temos que |grad(w)| = ϕ′(u)|grad(u)|. Assim, pelo exposto acima e por (102)

temos que

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

=
det(∇2(w))wknwirRkirn

|grad(w)|n−2

=
(det(∇2(w))aknairRkirn
ϕ′(u)ϕ′(u)|grad(w)|n−2
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=
(det(∇2(w))aknairRkirn

ϕ′(u)det(akn)ϕ′(u)det(air)|grad(w)|n−2

=
det(∇2(w))(ϕ′(u))n−1(ϕ′(u))n−1aknairRkirn

(ϕ′(u))ndet(akn)(ϕ′(u))ndet(air)|grad(w)|n−2

=
(det(∇2(w))ϕ′(u))n−1ϕ′(u))n−1aknairRkirn

det(∇2(w))det(∇2(w))|grad(w)|n−2

=
((ϕ′(u))2n−2aknairRkirn

det(∇2(w))|grad(w)|n−2

=
((ϕ′(u))2n−2aknairRkirn

(ϕ′(u))ndet((aij))(ϕ′(u))n−2|grad(u)|n−2

=
aknairRkirn

det((aij))|grad(u)|n−2 . (103)

Pelo Lema 3.60 temos, para h→ ∞, que

aij =



−uin
GK
κi
|grad(u)|n−2, para i < n e j = n;

uinunj
GK
κiκj
|grad(u)|n−3, para i ̸= j e i, j < n;

(unn + h|grad(u)|2)
GK
κi
|grad(u)|n−2 +O(1), para i = j e i, j < n;

GK|grad(u)|n−1, para i = j = n.

Por outro lado, também pelo Lema 3.60, temos que

det((aij)) = (unn + h|grad(u)|2)GK|grad(u)|n−1 +O(1).

Observe que para i ̸= j ou i = j = n temos que aij são independentes de h. Portanto, de

(103), temos que

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

=
aknairRkirn

det((aij))|grad(u)|n−2

=
aknarrRkrrn

det((aij))|grad(u)|n−2 +O
(

1
h

)

=

(
−ukn

GK
κk
|grad(u)|n−2

)(
det((aij))

κr|grad(u)|

)
Rkrrn

det((aij))|grad(u)|n−2

+

(
GK|grad(u)|n−1) ( det((aij))

κr|grad(u)|

)
Rnrrn

det((aij))|grad(u)|n−2 +O
(

1
h

)
= − uknGKRkrrn
|grad(u)|κkκr

+
GKRnrrn

κr
+O

(
1
h

)
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= −Rrnrn
GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

)
,

onde k < n− 1. Então pela fórmula de coarea aplicada ao lado direito de (101) nos dá

que ∫
Ω\D

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

dµ =

=
∫

Ω\D

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dµ

=
∫ s2

s1

∫
{p∈M:w(p)=s}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

|grad(w)|ds,

onde si = ϕ(ti), i = 1, 2, e D = {p ∈ M : w(p) < s1} e Ω = {p ∈ M : w(p) < s2}. Fazendo

a mudança de variável s = ϕ(t) e fazendo h→ ∞ temos que∫
Ω\D

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

dµ =

=
∫ s2

s1

∫
{p∈M:w(p)=s}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

|grad(w)|ds

=
∫ ϕ(t2)

ϕ(t1

∫
{p∈M:w(p)=ϕ(t)}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

|grad(w)|dϕ(t)

=
∫ t2

t1

∫
{p∈M:u(p)=t}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

ϕ′(u)|grad(u)|ϕ
′(t)dt

=
∫ t2

t1

∫
{p∈M:u(p)=t}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

ϕ′(t)|grad(u)|ϕ
′(t)dt

=
∫ t2

t1

∫
{p∈M:u(p)=t}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)| +O

(
1
h

))
dσ

|grad(u)|dt

=
∫ t2

t1

∫
{p∈M:u(p)=t}

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)|

)
dσ

|grad(u)|dt

= −
∫ t2

t1

∫
{p∈M:u(p)=t}

Rrnrn
GK
κr

dσ

|grad(u)|dt +
∫ t2

t1

∫
{p∈M:u(p)=t}

Rrkrn
GK
κrκk

unk
|grad(u)|

dσ

|grad(u)|dt

Usando novamente a fórmula de coarea obtemos que∫
Ω\D

R(T w(grad(w)), Ei, T w(Ei), grad(w))
|grad(w)|ndet(∇2(w))

dµ =

= −
∫ t2

t1

∫
{p∈M:u(p)=t}

Rrnrn
GK
κr

dσ

|grad(u)|dt +
∫ t2

t1

∫
{p∈M:u(p)=t}

Rrkrn
GK
κrκk

unk
|grad(u)|

dσ

|grad(u)|dt

= −
∫

Ω\D
Rrnrn

GK
κr

dµ +
∫

Ω\D
Rrkrn

GK
κrκk

unk
|grad(u)|dµ.

Ou ainda,

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK
κr

dµ +
∫

Ω\D
Rrkrn

GK
κrκk

unk
|grad(u)|dµ,
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onde todas as quantidades são calculadas com respeito ao referencial principal de u e

k ≤ n− 1.

A Definição 3.63 faz referência ao artigo [GhW76, Definição 1, p. 211].

Definição 3.63. Sejam (M, g) uma variedade Riemanniana e u : M→ R uma função. Dizemos

que u é estritamente convexa no sentido de Greene-Wu se para todos p ∈ M e toda função

ϕ de classe C∞ definida em uma vizinhança de p existe um ε > 0 tal que u− εϕ é convexa em

uma vizinhança de p.

Definição 3.64. Sejam (M, g) uma variedade Riemanniana, u : M→ R uma função e Ω ⊂ M

um domínio em M. Considere q ∈ Ω e ρ(p) = d(p, q). Definimos

uε(p) = u(p) +
ε

2
ρ2(p).

Note que se u é uma função convexa então uε(p) será estritamente convexa no sentido

de Greene-Wu, pois uε(p)− ε

2
ρ2(p) = u(p) é convexa.

Na Definição 3.65 vamos generalizar para variedades Riemannianas o conceito de

suavizadores construído para o Lema 2.99.

Definição 3.65. Sejam (M, g) uma variedade Riemanniana, u : M → R uma função de M

e ϕ : Rn → R uma função suporte em [−1, 1] de classe C∞ tal que ϕ é constante em uma

vizinhança da origem e satisfaz
∫

Rn ϕ(|x|)dx = 1. Definimos

(u ◦λ ϕ)(p) =
1

λn

∫
v∈Tp M

ϕ

(
|v|
λ

)
u(expp(v))dµp, (104)

onde dµp é a medida em TpM ≃ Rn induzida pela medida Riemanniana dµ de M. Além disso,

definimos também

ũε
λ = uε ◦λ ϕ.

Proposição 3.66. Sejam (M, g) uma variedade Riemanniana, u : M → R uma função de

M, ε > 0 e X ⊂ M um subconjunto compacto de M. Então existe λ > 0 tal que ũε
λ é de

classe C∞ em uma vizinhança aberta U de X e ũε
λ → uε uniformemente em U, quando λ→ 0.

Além disso, se u é de classe Ck em uma vizinhança aberta U de X então ũε
λ → uε em U com

respeito a topologia Ck. Por fim, se u é convexa então ũε
λ será estritamente convexa no sentido de

Greene-Wu com Hessiana positiva definida em todo ponto.

Demonstração. Note que a primeira parte segue do Lema 2.99. Note que se u é convexa

então então uε(p) é estritamente convexa no sentido de Greene-Wu e por [GhW76,

Teorema 2, p. 214 - 220 e Lema 3.3, p. 215 - 217] temos que ũε
λ será estritamente convexa

no sentido de Greene-Wu com Hessiana positiva definida em todo ponto.
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Definição 3.67. Sejam (M, g) uma variedade Riemanniana, A ⊂ M um subconjunto de M

e Uθ(A) a vizinhança tubular de raio θ de A. Definimos uma função de corte para Uθ(A)

como uma função contínua η ≥ 0 em M a qual depende somente da distância δ(·) = dA(·), é não

decrescente em termos de δ, e satisfaz

η(p) =

0 se δ(p) ≤ θ,

1 se δ(p) ≥ 2θ.
(105)

Pelo Lema 3.3 temos que δ é Lipschitz. Assim, podemos escolher η de modo a ser

Lipschitz também e, consequentemente, diferenciável em quase todo ponto.

Em todo ponto de diferenciabilidade de η temos que

〈
T u
(

grad(u)
|grad(u)|n

)
, grad(η)

〉
=
⟨(T u

ij )ujEi, ηkEk⟩
|grad(u)|n

=
(T u

ij )ujηk

|grad(u)|n ⟨Ei, Ek⟩

=
(T u

ij )ujηk

|grad(u)|n δik

=
(T u

ij )ηiuj

|grad(u)|n

=
(T u

in)ηiun

|grad(u)|n

=
(T u

in)ηi(−|grad(u)|)
|grad(u)|n

= −
(T u

in)ηi

|grad(u)|n−1

= −
(T u

kn)ηk

|grad(u)|n−1 −
(T u

nn)ηn

|grad(u)|n−1 ,

onde k ≤ n− 1. Pelo Lema 3.60 aplicado às matrizes (T u
kn) e (T u

nn) obtemos que

〈
T u
(

grad(u)
|grad(u)|n

)
, grad(η)

〉
= −

(T u
kn)ηk

|grad(u)|n−1 −
(T u

nn)ηn

|grad(u)|n−1

= −
−uknΠl ̸=kκl|grad(u)|n−2ηk

|grad(u)|n−1 − GK|grad(u)|n−1ηn

|grad(u)|n−1

=
unkηk
|grad(u)|

GK
κk
− ηnGK.
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Além disso, temos que para um campo de vetores Y ∈ X(M) arbitrário em M, uma

variedade Riemanniana,

div(ηY) =
n

∑
i=1
⟨∇Ei(ηY), Ei⟩

=
n

∑
i=1
⟨Ei(η)Y + η∇Ei(Y), Ei⟩

=
n

∑
i=1

(
⟨Ei(η)Y, Ei⟩ + ⟨η∇Ei(Y), Ei⟩

)
=

n

∑
i=1
⟨Y, Ei(η)Ei⟩ +

n

∑
i=1
⟨η∇Ei(Y), Ei⟩

=
n

∑
i=1
⟨Y, ⟨grad(η), Ei⟩Ei⟩ + η

n

∑
i=1
⟨∇Ei(Y), Ei⟩

=
n

∑
i=1
⟨Y, ηiEi⟩ + η

n

∑
i=1
⟨∇Ei(Y), Ei⟩

= ⟨Y, grad(η)⟩ + ηdiv(Y).

Logo, obtemos que∫
div
(

ηT u
(

grad(u)
|grad(u)|n

))
dµ =

∫ 〈
T u
(

grad(u)
|grad(u)|n

)
, grad(η)

〉
dµ+

+
∫

ηdiv
(
T u
(

grad(u)
|grad(u)|n

))
dµ

=
∫ ( unkηk
|grad(u)|

GK
κk
− ηnGK

)
dµ+

+
∫

ηdiv
(
T u
(

grad(u)
|grad(u)|n

))
dµ (106)

Para o nosso próximo Teorema 3.69 note que nossa nova fórmula de comparação poderá

ser aplicada para funções convexas, onde as principais curvaturas podem ser nulas.

Assim, vamos definir algumas convenções na Definição 3.68.

Definição 3.68. Sejam (M, g) uma variedade Riemanniana e Γ uma hipersuperfície mergulhada

de M. Considere κi, i = 1, . . . n− 1, as curvaturas principais de Γ. Definimos

GK
κr

= Πi ̸=rκi e
GK
κkκr

= Πi ̸=k,rκi.

Além disso, definimos

Gη(Γ) =
∫

Γ
ηGKdσ.
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Teorema 3.69 (Fórmula de comparação, versão geral). Sejam (M, g) uma variedade Rie-

manniana, u : M→ R uma função, Γ ⊂ M um conjunto de nível regular de u que limita um

domínio Ω e γ ⊂ M outro conjunto de nível regular de u que limita um domínio D tal que

D ⊂ Ω. Suponha que grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus

respectivos domínios. Além disso, suponha que u é de classe C1,1 em (Ω \ D) \ A, para algum

conjunto fechado A ⊂ Ω \ D, e u ou é convexa ou ∇2eu é não degenerada em quase todo ponto

de (Ω \ D) \ A. Seja dµ a medida de volume Riemanniano n-dimensional em M. Então, para

θ > 0 e η uma função corte para Uθ(A),

Gη(Γ)− Gη(γ) =
∫

Ω\D

(
ηk

GK
κk

unk
|grad(u)| − ηnGK

)
dµ+

+
∫

Ω\D
η

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)|

)
dµ,

onde todas as quantidades são calculadas com respeito ao referencial principal de u e k ≤ n− 1.

Demonstração. Considere u : M → R a função de M, ε > 0 arbitrário e cl(Ω) \ D um

subconjunto compacto de M. Pela Proposição 3.66 temos que existe λ > 0 tal que ũε
λ é

de classe C∞ em uma vizinhança aberta U de cl(Ω) \ D.

Como Γ e γ são conjuntos de níveis de u que limitam os domínios Ω e D, respec-

tivamente, tais que D ⊂ Ω. Então temos que Γ = {p ∈ M : u(p) = t1}, γ = {p ∈ M :

u(p) = t2}, Ω = {p ∈ M : u(p) ≤ t1} e D = {p ∈ M : u(p) ≤ t2}, com t2 < t1. Considere

Γε
λ = {p ∈ M : ũε

λ(p) = t1}, γε
λ = {p ∈ M : ũε

λ(p) = t2}, Ωε
λ = {p ∈ M : ũε

λ(p) ≤ t1} e

Dε
λ = {p ∈ M : ũε

λ(p) ≤ t2}.
Agora, por (106) para ũε

λ e calculado sobre Ωε
λ \ Dε

λ obtemos:

∫
Ωε

λ\D
ε
λ

div
(

ηT ũε
λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Ωε

λ\D
ε
λ

(
ηk

GK
κk

(ũε
λ)nk

|grad(ũε
λ)| − ηnGK

)
dµ+

+
∫

Ωε
λ\D

ε
λ

ηdiv
(
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ (107)

Vamos calcular primeiro o lado esquerdo de (107). Pelo Teorema da divergência, temos

que

∫
Ωε

λ\D
ε
λ

div
(

ηT ũε
λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
∂(Ωε

λ\D
ε
λ)

〈
ηT ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
, ν

〉
dσ

=
∫

Γε
λ∪γε

λ

〈
ηT ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
, ν

〉
dσ,
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onde ν é o normal para fora de ∂(Ωε
λ \ Dε

λ) = Γε
λ ∪ γε

λ. Note que ν =
grad(ũε

λ)
|grad(ũε

λ)| em Γε
λ e

ν = −
grad(ũε

λ)
|grad(ũε

λ)| em γε
λ. Assim,

∫
Ωε

λ\D
ε
λ

div
(

ηT ũε
λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Γε

λ∪γε
λ

〈
ηT ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
, ν

〉
dσ

=
∫

Γε
λ

〈
ηT ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ+

+
∫

γε
λ

〈
ηT ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,−

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ

=
∫

Γε
λ

η

〈
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ−

−
∫

γε
λ

η

〈
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ

Procedendo analogamente à demonstração do Lema 3.56 obtemos que∫
Ωε

λ\D
ε
λ

div
(

ηT ũε
λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Γε

λ

η

〈
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ−

−
∫

γε
λ

η

〈
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

)
,

grad(ũε
λ)

|grad(ũε
λ)|

〉
dσ

=
∫

Γε
λ

ηGK(p)dσ−
∫

γε
λ

ηDK(q)dσ

= Gη(Γε
λ)− Gη(γε

λ). (108)

Agora, vamos calcular a segunda integral do lado direito de (107). Pelo Lema 3.52 temos

que∫
Ωε

λ\D
ε
λ

ηdiv
(
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Ωε

λ\D
ε
λ

η

(〈
div(T ũε

λ),
grad(ũε

λ)
|grad(ũε

λ)|n

〉)
dµ.

Agora, pelo Lema 3.58, temos que∫
Ωε

λ\D
ε
λ

ηdiv
(
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Ωε

λ\D
ε
λ

η

(〈
div(T ũε

λ),
grad(ũε

λ)
|grad(ũε

λ)|n

〉)
dµ

=
∫

Ωε
λ\D

ε
λ

η

(
R(T ũε

λ(grad(ũε
λ)), Ei, T ũε

λ(Ei), grad(ũε
λ))

|grad(ũε
λ)|ndet(∇2(ũε

λ))

)
dµ.

Procedendo analogamente à demonstração do Teorema 3.62 obtemos que∫
Ωε

λ\D
ε
λ

ηdiv
(
T ũε

λ

(
grad(ũε

λ)
|grad(ũε

λ)|n

))
dµ =

∫
Ωε

λ\D
ε
λ

η

(
R(T ũε

λ(grad(ũε
λ)), Ei, T ũε

λ(Ei), grad(ũε
λ))

|grad(ũε
λ)|ndet(∇2(ũε

λ))

)
dµ
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=
∫

Ωε
λ\D

ε
λ

η

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

(ũε
λ)nk

|grad(ũε
λ)|

)
dµ,

(109)

onde todas as quantidades são calculadas com respeito ao referencial principal de ũε
λ e

k ≤ n− 1. Portanto, usando os resultados de (108) e (109) em (107) temos que

Gη(Γε
λ)− Gη(γε

λ) =
∫

Ωε
λ\D

ε
λ

(
ηk

GK
κk

(ũε
λ)nk

|grad(ũε
λ)| − ηnGK

)
dµ+

+
∫

Ωε
λ\D

ε
λ

η

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

(ũε
λ)nk

|grad(ũε
λ)|

)
dµ. (110)

Agora, fazendo λ→ 0 obtemos, pela Proposição 3.66 que ũε
λ → uε uniformemente em

U. Além disso, como u é de classe C1,1 em uma vizinhança aberta U de (Ω \ D) \ A

então ũε
λ → uε em U com respeito a topologia C1,1. Além disso, quando fazemos ε→ 0

obtemos que uε → u, pois uε = u +
ε

2
ρ2. Disso, segue-se que Γε

λ → Γ, γε
λ → γ, Ωε

λ → Ω

e Dε
λ → D quando λ→ 0 e ε→ 0. Portanto, de (110), temos que

Gη(Γ)− Gη(γ) =
∫

Ω\D

(
ηk

GK
κk

unk
|grad(u)| − ηnGK

)
dµ+

+
∫

Ω\D
η

(
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)|

)
dµ,

onde todas as quantidades são calculadas com respeito ao referencial principal de u e

k ≤ n− 1.
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3.4 aplicações para a fórmula de compara-
ção

Nesta seção vamos estabelecer algumas aplicações para a fórmula de comparação obtida

no Teorema 3.69, como para variedades com curvatura seccional constante, tomando-

se conjuntos de níveis regulares para a função distância com sinal, ou tomando-se a

hipersuperfície como uma esfera geodésica. Comecemos com algumas definições.

Definição 3.70. Sejam (M, g) uma variedade Riemanniana, u : M → R uma função de

M e p ∈ M um ponto de M onde u é duas vezes diferenciável. Considere o conjunto de

nível regular Γ = {q ∈ M : u(q) = u(p)} e κ1, . . . , κn−1 as curvaturas principais de Γ. Seja

κ = (κ1, . . . , κn−1). Definimos a r-ésima curvatura média generalizada de Γ por

σr(κ) = σr(κ1, . . . , κn−1),

onde σr denota as funções simétricas elementares, isto é, σr(x1, . . . , xk) = ∑
i1<···<ir

xi1 . . . xir .

Observação 3.71. Nas condições da Definição 3.70 temos que σn−1(κ) = GK e σ1(κ) = (n− 1)H,

onde H é a curvatura média de Γ.

Note que vol
(
Sn−1) = nωn, onde ωn = vol (Bn) =

πn/2

G
(n

2
+ 1
) e G é a função gama.

Lema 3.72. Seja (M, g) uma variedade Riemanniana n-dimensional e Br uma bola geodésica de

raio r, suficientemente pequeno, em M. Então

|G (∂Br)− nωn| ≤ Cr2,

para alguma constante C independente de r.

Demonstração. Para ∂Br, uma esfera geodésica, considere κ1, . . . , κn−1 as curvaturas

principais de ∂Br. Por [CV81, Teorema 3.1, p. 36] temos, em particular, que

GK = Πn−1
k=1 κi(p) = Πn−1

k=1

(
1
r

δii +O(r)
)

=
1

rn−1 +O(rn−1),

onde GK é a curvatura de Gauss-Kronecker de ∂Br. Além disso, temos por [CV81,

Teorema 3.5, p. 37] que para r suficientemente pequeno GK ≥ 0. Portanto

0 ≤ GK ≤ 1
rn−1 . (111)
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Além disso, por [Gra74, Teorema 3.1, p. 337 - 338] temos que

vol(∂Br) = αnrn−1 − Ric(∂Br)
αn

6n
rn+1 +O(rn+3),

onde αn = 3G
(

1
2

)n
G
(n

2

)−1
, G é a função gama e Ric(∂Br) é a curvatura de Ricci de

∂Br. Primeiramente, note que, αn =
2πn/2

G
(n

2

) =
nπn/2

G
(n

2
+ 1
) = nωn. Portanto, temos que

vol(∂Br)− nωnrn−1 ≤ Crn+1 (112)

onde C = −Ric(∂Br)
nωn

6n
é uma constante independente de r. Usando (111) e (112)

obtemos que

G(∂Br)− nωn =
∫

∂Br
GKdσ− nωn

≤
∫

∂Br

1
rn−1 dσ− nωn

≤ 1
rn−1 vol(∂Br)− nωn

≤ 1
rn−1 (Crn+1 + nωnrn−1)− nωn

≤ Cr2 + nωn − nωn

≤ Cr2. (113)

Por outro lado,

G(∂Br)− nωn =
∫

∂Br
GKdσ− nωn

≥ −nωn

≥ −C
rn+1

1− rn−1

≥ −Cr2 1
1− rn−1 − C

rn−1

1− rn−1 .

Assim, quando r é suficientemente pequeno temos que
1

1− rn−1 → 1 e
rn−1

1− rn−1 → 0.

Logo,

G(∂Br)− nωn ≥ −Cr2 1
1− rn−1 − C

rn−1

1− rn−1

≥ −Cr2. (114)
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Por (113) e (114) temos que

|G (∂Br)− nωn| ≤ Cr2.

Faremos primeiramente a aplicação para o caso de uma variedade Riemanniana com

curvatura seccional constante.

Corolário 3.73. Sejam (M, g) uma variedade Riemanniana de curvatura seccional constante

igual a K0, u : M→ R uma função, Γ ⊂ M um conjunto de nível regular de u que limita um

domínio Ω e γ ⊂ M outro conjunto de nível regular de u que limita um domínio D tal que

D ⊂ Ω. Suponha que grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus

respectivos domínios. Além disso, suponha que u é de classe C1,1 em Ω \ D e u ou é convexa ou

∇2eu é não degenerada em quase todo ponto de Ω \D. Seja dµ a medida de volume Riemanniano

n-dimensional em M. Então,

G(Γ)− G(γ) = −K0

∫
Ω\D

σn−2(κ)dµ. (115)

Em particular, se Γ e γ são convexos e K0 ≤ 0 então G(Γ) ≥ G(γ). Além disso, se Γ é convexo e

K0 ≤ 0 então

G(Γ) ≥ nωn − K0

∫
Ω

σn−2(κ)dµ ≥ nωn. (116)

Demonstração. Primeiramente, como M tem curvatura seccional constante K0, pela

Proposição 2.51 temos que Rijkl = K0
(
δikδjl − δilδjk

)
. Portanto, pelo Teorema 3.69 e

usando que a função de corte η é constante e igual a 1, pois A = ∅, temos que

G(Γ)− G(γ) =
∫

Ω\D
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)|dµ

=
∫

Ω\D
−K0 (δrrδnn − δrnδnr)

GK
κr

+ K0 (δrrδkn − δrnδkn)
GK
κrκk

unk
|grad(u)|dµ.

Como r, k ≤ n− 1 temos que δrn = δkn = 0 e portanto

G(Γ)− G(γ) =
∫

Ω\D
−K0 (δrrδnn − δrnδnr)

GK
κr

+ K0 (δrrδkn − δrnδkn)
GK
κrκk

unk
|grad(u)|dµ

=
∫

Ω\D
−K0δrr

GK
κr

dµ

= −K0

∫
Ω\D

n−1

∑
r=1

(
Πl ̸=rκl

)
dµ

= −K0

∫
Ω\D

σn−2(κ)dµ.
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Suponha agora que Γ e γ são convexos e K0 ≤ 0. Por [Bor02, Lema 1, p. 851] temos que

os conjuntos de níveis {p ∈ M : u(p) ≤ b}, t1 ≤ b ≤ t2, onde Γ = {p ∈ M : u(p) = t2} e

γ = {p ∈ M : u(p) = t1}, são convexos. Portanto, como esses conjuntos de níveis são

convexos, todas as curvaturas principais são positivas, pois a hessiana de u é positiva

semi-definida. Donde temos que σn−2(κ) ≥ 0. Logo, temos que

G(Γ)− G(γ) = −K0

∫
Ω\D

σn−2(κ)dµ ≥ 0.

Ou ainda, G(Γ) ≥ G(γ).

Por fim, considere γ uma sequência de esferas geodésicas com raio convergindo para

0, Γ convexa e K0 ≤ 0. Pelo Lema 3.72 quando r → 0 temos que

0← −Cr2 ≤ G(γ)− nωn.

Isto é,

G(γ) ≥ nωn.

Logo, como Γ é convexo, por [Bor02, Lema 1, p. 851], temos que os conjuntos de níveis

{p ∈ M : u(p) ≤ b}, b ≤ t2, onde Γ = {p ∈ M : u(p) = t2}, são convexos. Portanto, como

esses conjuntos de níveis são convexos, todas as principais curvaturas são positivas,

pois a hessiana de u é positiva semi-definida. Donde temos que σn−2(κ) ≥ 0. Além

disso, por (115) e como K0 ≤ 0 temos que

G(Γ) ≥ nωn − K0

∫
Ω

σn−2(κ)dµ ≥ nωn.

Agora faremos o caso no qual tomamos o conjunto de nível regular da função

distância com sinal.

Corolário 3.74. Sejam (M, g) uma variedade Cartan-Hadamard, Γ ⊂ M uma hipersuperfície

mergulhada em M convexa e de classe C1,1 tal que Γ limita um domínio Ω, isto é, ∂Ω = Γ. Seja

u = d∗Γ e γ ⊂ M um conjunto de nível regular convexo de u que limita um domínio D tal

que D ⊂ Ω e Ω \ D ⊂ Ur(Γ), com r = reach(Γ). Seja dµ a medida de volume Riemanniano

n-dimensional em M. Então,

G(Γ)− G(γ) = −
∫

Ω\D
Rrnrn

GK
κr

dµ. (117)

Em particular, se KM ≤ −a ≤ 0 então

G(Γ) ≥ G(γ) + a
∫

Ω\D
σn−2(κ)dµ. (118)

Por fim, se Γ é uma esfera geodésica e KM ≤ 0 então G(Γ) ≥ nωn.
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Demonstração. Note que pelo Lema 3.6 item (2) temos que grad(u) é o normal para

fora ao longo de Γ e γ com respeito aos seus respectivos domínios. Além disso, pela

Proposição 3.25 temos que u é de classe C1,1 em Ur(Γ), em particular, u é de classe C1,1

em Ω \ D, pois Ω \ D ⊂ Ur(Γ) por hipótese.

Além disso, assuma que γ = (d∗Γ)−1(−ε), com 0 < ε < r, como γ é convexo temos,

pelo Lema 3.34, que dD é convexa em M. Assim, como d∗Γ = d∗γ + ε temos que d∗Γ é

convexa em Ω \ D. De fato, considere p1, p2 ∈ Ω \ D e γ : [t1, t2]→ M a geodésica tal

que γ(t1) = p1, γ(t2) = p2 e γ([t1, t2]) ⊂ Ω \ D. Tome p ∈ γ([t1, t2]) arbitrário tal que

γ((1− λ)t1 + λt2) = p, λ ∈ [0, 1]. Logo, como dD é convexa,

d∗Γ ◦ γ((1− λ)t1 + λt2) = d∗Γ(p) = d∗γ(p) + ε = (dD ◦ γ((1− λ)t1 + λt2)) + ε

≤ ((1− λ)dD ◦ γ(t1) + λdD ◦ γ(t2)) + ε

= ((1− λ)dD(p1) + λdD(p2)) + ε

= ((1− λ)(d∗Γ(p1)− ε) + λ(d∗Γ(p2)− ε)) + ε

= ((1− λ)d∗Γ(p1) + λd∗Γ(p2))− ε + λε− λε + ε

= (1− λ)d∗Γ(p1) + λd∗Γ(p2)

= (1− λ)d∗Γ ◦ γ(t1) + λd∗Γ ◦ γ(t2).

Pelo Lema 3.12 temos que |grad(u)| é constante nos conjuntos de nível de u, donde

temos que ukn = Hess(u)(Ek, En) = ⟨∇Ek grad(u), En⟩ = 0. Portanto, pelo Teorema 3.69 e

usando que a função de corte η é constante e igual a 1, pois A = ∅, temos que

G(Γ)− G(γ) =
∫

Ω\D
−Rrnrn

GK
κr

+ Rrkrn
GK
κrκk

unk
|grad(u)|dµ

= −
∫

Ω\D
Rrnrn

GK
κr

dµ

Suponha que KM ≤ −a ≤ 0. Daí para i ̸= j temos que

−a ≥ KM = K(Ei, Ej)

=
(Ei, Ej, Ej, Ei)

|Ei|2|Ej|2 − ⟨Ei, Ej⟩2

= Rijij.

Isto é, para i ̸= j, −Rijij ≥ a. Portanto, por (117) temos que

G(Γ) = G(γ) +
∫

Ω\D
−Rrnrn

GK
κr

dµ
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≥ G(γ) +
∫

Ω\D
a

n−1

∑
r=1

(
Πl ̸=rκl

)
dµ

= G(γ) + a
∫

Ω\D
σn−2(κ)dµ

Por fim, se Γ é uma esfera geodésica e KM ≤ 0 temos que γ é uma esfera geodésica

também, pois são hipersuperfícies paralelas. Fazendo o raio de γ tender para 0 temos,

pelo Lema 3.72, que G(γ) ≥ nωn. Além disso, como dD é convexa em M e para p ̸∈ D

temos que d∗γ = dD então as hipersuperfícies paralelas exteriores de γ são convexas;

assim, todas as curvaturas principais são positivas, pois a hessiana de dD é positiva

semi-definida. Donde temos que σn−2(κ) ≥ 0. Logo, por (118) temos que

G(Γ) ≥ G(γ) + a
∫

Ω\D
σn−2(κ)dµ

≥ nωn + a
∫

Ω\D
σn−2(κ)dµ

≥ nωn.

Lema 3.75. Sejam (M, g) uma variedade Riemanniana e U ⊂ M um subconjunto aberto de M

que é estrelado com respeito a um ponto p ∈ U. Suponha que a curvatura de U é constante com

relação a todos os planos que são tangentes às geodésicas que partem de p. Então a curvatura de

U é constante.

Demonstração. Seja K0 o valor da curvatura de U, onde a curvatura de U é constante.

Considere (M̃, g̃) uma variedade Riemanniana completa, simplesmente conexa, com

curvatura constante K0 e da mesma dimensão de M. Seja p̃ ∈ M̃ e i : TpM→ Tp̃M̃ uma

isometria. Defina f : U → M̃ por f (q) = exp p̃ ◦ i ◦ (expp)−1(q). Pelo Teorema 2.92 temos

que f é uma isometria local, o que prova o requerido.

A nossa última aplicação será quando para uma variedade Riemanniana com curva-

tura seccional constante não-positiva e a hipersuperfície é uma esfera geodésica. Note

que esta aplicação é resultado das duas últimas aplicação, pois podemos ver uma esfera

geodésica como um conjunto de nível da função distância.

Corolário 3.76. Seja (M, g) uma variedade Riemanniana n-dimensional, Bρ uma bola geodésica

em M e suponha que KM ≤ −a ≤ 0. Então

G(∂Bρ) ≥ nωn + a
∫

Bρ

σn−2(κ)dµ ≥ G(∂Ba
ρ), (119)
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onde Ba
ρ é uma bola geodésica de raio ρ no espaço hiperbólico Hn(−a). Se temos a igualdade em

qualquer uma das duas desigualdades de (119) então Bρ é isométrica a Ba
ρ.

Demonstração. Seja Br uma bola geodésica de raio r < ρ com o mesmo centro que Bρ.

Como ∂Bρ é uma esfera geodésica temos que ela é de classe C∞, em particular C1,1, e

também é h-convexa, donde temos que ∂Bρ é d-convexa pelo Lema 3.41. Portanto, pelo

Corolário 3.74 em (118) temos que

G(∂Bρ) ≥ G(∂Br) + a
∫

Bρ\Br
σn−2(κ)dµ.

Fazendo r → 0, pelo Lema 3.72, que

G(∂Bρ) ≥ nωn + a
∫

Bρ

σn−2(κ)dµ.

Assumindo que ocorre a igualdade nas inequações acima, pela Corolário 3.74 em (117)

que ∫
Bρ\Br

aσn−2(κ)dµ = G(∂Bρ)− G(∂Br)

= −
∫

Bρ\Br
Rrnrn

GK
κr

dµ

=
∫

Bρ\Br

n−1

∑
r=1
−RrnrnΠl ̸=rκldµ.

Ou ainda,

aσn−2(κ) =
n−1

∑
r=1
−RrnrnΠl ̸=rκl

n−1

∑
r=1

aΠl ̸=rκl =
n−1

∑
r=1
−RrnrnΠl ̸=rκl

Isto é, Rrnrn = −a. Então, como Bρ é estrelado, pelo Lema 3.75 temos que Bρ tem

curvatura constante igual a −a, portanto Bρ é isométrica a Ba
ρ.

Note que as curvaturas principais de ∂Br são limitadas por cima por
√

acoth
(√

ar
)

por [Che89, Proposição 1.7.3, p. 184]. Consequentemente, em ∂Br,

σn−2(κ) =
n−1

∑
k=1

(
Πl ̸=kκl

)
≥

n−1

∑
k=1

(
Πl ̸=k
√

acoth
(√

ar
))

= (n− 1)
(√

acoth
(√

ar
))n−2 . (120)

Considere A(r, θ)dθ o elemento de volume (área superficial) de ∂Br e H(r, θ) a função

curvatura média de ∂Br em coordenadas esferas geodésicas (geradas pela aplicação

exponencial no centro de Br. Por [Che89, Proposição 1.5.4, p. 181], temos que

d
dr

A(r, θ) = (n− 1)H(r, θ)A(r, θ) ≥ (n− 1)
√

acoth
(√

ar
)

A(r, θ).
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Desenvolvendo a inequação acima para r0 < r, obtemos

d
dr

A(r, θ) ≥ (n− 1)
√

acoth
(√

ar
)

A(r, θ)

d
dr

A(r, θ)

A(r, θ)
≥ (n− 1)

√
acoth

(√
ar
)

∫ r

r0

d
dt

A(t, θ)

A(t, θ)
dt ≥

∫ r

r0

(n− 1)
√

acoth
(√

at
)

dt

ln (A(r, θ))− ln (A (r0, θ)) ≥

ln

( senh
(√

at
)

√
a

)n−1
r

r0

ln (A(r, θ))− ln (A (r0, θ)) ≥ ln

( senh
(√

ar
)

√
a

)n−1
− ln

( senh
(√

ar0
)

√
a

)n−1


ln
(

A(r, θ)
A (r0, θ)

)
≥ ln




senh
(√

ar
)

√
a

senh
(√

ar0
)

√
a


n−1


A(r, θ)
A (r0, θ)

≥

(
senh

(√
ar
)

√
a

)n−1

(
senh

(√
ar0
)

√
a

)n−1

A(r, θ) ≥ A (r0, θ)(
senh

(√
ar0
)

√
a

)n−1

(
senh

(√
ar
)

√
a

)n−1

.

Fazendo-se r0 → 0 obtemos que

A(r, θ) ≥
(

senh
(√

ar
)

√
a

)n−1

. (121)

Consequentemente, de (120) e (121), temos que

nωn + a
∫

Bρ

σn−2(κ)dµ = nωn + a
∫ ρ

0

∫
Sn−1

σn−2(κ)A(r, θ)dθdr

≥ nωn + a
∫ ρ

0

∫
Sn−1

(n− 1)
(√

acoth
(√

ar
))n−2

(
sinh

(√
ar
)

√
a

)n−1

dθdr
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= nωn +
∫

Sn−1
dθ
∫ ρ

0
a(n− 1)

(√
acoth

(√
ar
))n−2

(
sinh

(√
ar
)

√
a

)n−1

dr

= nωn + nωn

∫ ρ

0

√
a(n− 1)

(
cosh

(√
ar
))n−2 sinh

(√
ar
)

dr

= nωn + nωn

((
cosh

(√
ar
))n−1

)ρ

0

= nωn + nωn
(
cosh

(√
aρ
))n−1 − nωn

(
cosh

(√
a0
))n−1

= nωn + nωn
(
cosh

(√
aρ
))n−1 − nωn

= nωn
(
cosh

(√
aρ
))n−1

= G(∂Ba
ρ).

Donde temos o desejado. Assumindo que ocorre a igualdade na inequação acima,

então vale a igualdade na primeira inequação de (119) e, pelo mesmo argumento dado

anteriormente, temos que Bρ é isométrica a Ba
ρ.
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3.5 curvatura do envoltório convexo

Definição 3.77. Seja (M, g) uma variedade de Cartan-Hadamard, Γ ⊂ M uma hipersuperfície

convexa de M e ε > 0. Definimos a curvatura total de Γ por

G(Γ) = lim
ε→0
G(Γε), (122)

onde Γε é uma hipersuperfície paralela exterior de Γ, isto é, Γε = (d∗Γ)−1(ε).

Note que a curvatura total de Γ esta bem definida. De fato, como Γ é convexa temos

que reach(Γ) > 0. Pelo Lema 3.24 temos que d∗Γ é C1,1 próximo a Γ e, consequentemente,

Γε é C1,1. Pelo Teorema de Rademacher temos que Γε é C2 em quase todo ponto; portanto,

G(Γε) está definida em quase todo ponto.

Por outro lado, temos que ε 7→ G(Γε) é crescente. De fato, considere ε1 < ε2 e note que

pelo Corolário 3.74 temos que G(Γε2) ≥ G(Γε1), pois Γε1 é convexo, já que Γ é convexa.

Assim, como G(Γε) ≥ 0, temos que a curvatura total de Γ esta bem definida.

Definição 3.78. Seja (M, g) uma variedade de Cartan-Hadamard e X ⊂ M um subconjunto de

M. Definimos o envoltório convexo de X, denotado por conv(X), como a interseção de todos

os conjuntos convexos fechados em M que contém X. Definimos

X0 = ∂conv(X).

Note que se conv(X) tem interior não vazio, então X0 é uma hipersuperfície convexa.

Nesta seção vamos mostrar que a curvatura total positiva de uma hipersuperfície

mergulhada Γ de classe C1,1 em uma variedade de Cartan-Hadamard não pode ser

menor que a curvatura total positiva de Γ0.

Definição 3.79. Seja X ⊂ Rn um subconjunto de Rn e p ∈ X um ponto de X. Definimos o

cone tangente de X em p, denotado por TpX, como o limite de todas as semirretas partindo de

p e que passam por uma sequência de pontos em X \ {p} que converge para p.

Definição 3.80. Sejam (M, g) uma variedade Riemanniana n-dimensional, X ⊂ M um subcon-

junto de M e p ∈ X um ponto de X. Definimos o cone tangente de X em p, denotado por

TpX, por

TpX = T0

(
exp−1

p (X)
)
⊂ TpM ≃ Rn.

Além disso, dizemos que o cone tangente de X em p é próprio se ele não é o próprio espaço

tangente a X em p.
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Definição 3.81. Seja X ⊂ Rn um subconjunto de Rn. Dizemos que X é um cone se existe um

ponto p ∈ X tal que para todo x ∈ X e λ > 0 temos que λ(x− p) ∈ X. Além disso, dizemos

que p é um vértice de X.

Lema 3.82. Sejam (M, g) uma variedade de Cartan-Hadamard, X ⊂ M um subconjunto

convexo de M e p ∈ ∂X um ponto de ∂X. Então TpX é um cone próprio e convexo em TpM.

Além disso, exp−1
p (X) ⊂ TpX.

Demonstração. A demonstração pode ser vista em [CG72, Proposição 1.8, p. 420].

Definição 3.83. Seja A ⊂ Rn um subconjunto aberto de Rn. Dizemos que que uma função

u : A→ R é semicôncava com módulo linear se u é contínua em A e existe C ≥ 0 tal que

u(x + h) + u(x− h)− 2u(x) ≤ C|h|2,

para todo x, h ∈ Rn tais que o segmento de reta que liga x− h e x + h está contido em A. Além

disso, uma função v : A → R é chamada de semiconvexa com módulo linear se −v é

semicôncava com modulo linear.

Lema 3.84. Seja (M, g) uma variedade Riemanniana n-dimensional e Γ ⊂ M uma hipersu-

perfície convexa de M que limita um domínio Ω ⊂ M. Então para cada ponto p ∈ Γ existe

uma carta local (U, ϕ) de M numa vizinhança de p tal que ϕ(U ∩ Γ) é o gráfico de uma função

semiconvexa f : V → R para algum conjunto aberto V ⊂ Rn−1. Em particular, Γ é duas vezes

diferenciável em quase todo ponto.

Demonstração. Considere p ∈ Γ arbitrário e tome U uma vizinhança normal de p em

M. Tome ϕ = exp−1
p . Assim, pelo Lema 3.82 temos que ϕ(Γ ∩U) = exp−1

p (Γ ∩U) ⊂
Tp(Γ∩U) ⊂ Rn e, além disso, Tp(Γ∩U) é um cone próprio e convexo em TpM, ou seja,

existe um hipreplano H em TpM que passa por 0 e é tal que Tp(Γ∩U) está em um lado.

Logo, temos que ϕ(Γ ∩U) é o gráfico de uma função f : V ⊂ Rn−1 → R com f ≥ 0.

Afirmamos que f é semiconvexa.

De fato, como Γ é convexa por hipótese, em cada ponto q ∈ Γ∩U existe uma esfera

Sq de raio r, para algum r > 0, que está contida em M \Ω. Note que a imagem de uma

vizinhança aberta de q em Sq pela f produz funções fq : Vq ⊂ Rn−1 → R de classe C2

tais que fq ≤ f em uma vizinhança Vq de xq = f−1(q) ∈ V.

Além disso, a Hessiana de fq em xq depende continuamente de q. Assim, como fq < f

em uma vizinhança Vq de xq temos que, para v ∈ Rn−1 tal que x + v ∈ Vq e x− v ∈ Vq

f (xq + v) + f (xq − v)− 2 f (xq)
|v|2 ≥ lim

|v|→0

fq(xq + v) + fq(xq − v)− 2 fq(xq)
|v|2 .
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Donde temos que, para f (x) = supq f (xq),

f (x + v) + f (x− v)− 2 f (x)
|v|2 ≥ sup

q
lim
|v|→0

fq(xq + v) + fq(xq − v)− 2 fq(xq)
|v|2 .

Mas, para uma função duas vezes diferenciável h : Rm → R podemos pensar em sua

segunda derivada como uma forma quadrática ∇2hp : Rm → R, que pode ser calculada

por

∇2hp(u) = lim
|u|→0

dhp+u(u)− dhp−u(u)
2|u|

= lim
|u|→0

lim|u|→0
h(p + u + u)− h(p + u− u)

2|u| − lim|u|→0
h(p− u + u)− h(p− u− u)

2|u|
2|u|

= lim
|u|→0

h(p + 2u) + h(p− 2u)− 2h(p)
4|u|2

= lim
|u|→0

h(p + u) + h(p− u)− 2h(p)
|u|2 .

Portanto, concluímos que

f (x + v) + f (x− v)− 2 f (x)
|v|2 ≥ sup

q
lim
|v|→0

fq(xq + v) + fq(xq − v)− 2 fq(xq)
|v|2

= sup
q
∇2 fqxq (v).

Tomemos assim C = supq∇2 fqxq (v) ≤ 0 e obteremos que

f (x + v) + f (x− v)− 2 f (x) ≥ C|v|2,

para todo x ∈ V. Portanto, f é semiconvexa por definição.

Como ϕ(Γ ∩U) é o gráfico de f , para mostrarmos que Γ é duas vezes diferenciável

em quase todo ponto basta mostrarmos que f é duas vezes diferenciável em quase

todo ponto. Mas por [CS04, Teorema 2.3.1 item i, p. 42] temos que f é duas vezes

diferenciável em quase todo ponto, pois f é semiconvexa com módulo linear.

Definição 3.85. Sejam (M, g) uma variedade Riemanniana e B ⊂ M um subconjunto de M.

Dizemos que B é fortemente convexo se M contém exatamente uma geodésica minimizante

entre quaisquer dois pontos de B e tal geodésica está contida em B. Dizemos também que B é

localmente convexo se cada ponto do fecho cl(B) de B tem uma vizinhança fortemente convexa

U tal que B ∩U é fortemente convexo.
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Definição 3.86. Sejam (M, g) uma variedade Riemanniana e B ⊂ M um subconjunto aberto

de M. Então o semiespaço H0 do espaço tangente TpM determinado por uma hipersuperfície H

que contém exp−1
p (B) em p ∈ ∂B é chamado de elemento de suporte para B se H0 contém os

vetores tangentes iniciais de todas as geodésicas minimizantes partindo de p para pontos de B.

H0 é um elemento de suporte local para B se, para alguma vizinhança U de p, H0 é um

elemento de suporte para B ∩U.

Lema 3.87. Sejam (M, g) uma variedade de Cartan-Hadamard, X ⊂ M um subconjunto

compacto de M e p ∈ X0 \ X um ponto que é duas vezes diferenciável. Então a curvatura de X0

em p é nula.

Demonstração. Seja conv(X) = exp−1
p (conv(X)). Pelo Lema 3.82 temos que conv(X) ⊂

Tpconv(X) e Tpconv(X) é um cone próprio em TpM. Então existe um hipreplano H em

TpM que passa por 0 e é tal que conv(X) está em um lado.

Note que H ∩ conv(X) é estrelado em p. De fato, seja q ∈ H ∩ conv(X). Considere o

segmento pq ⊂ H e note que a aplicação expp leva pq em uma geodésica em M que está

contida em conv(X), pois conv(X) é convexo. Consequentemente, pq ⊂ conv(X) como

desejado.

Suponha que H ∩ conv(X) tenha mais de um ponto, então existe um segmento de

geodésica de M em X0 com ponto final em p, o que faz com que a curvatura em p se

anule, pois geodésicas tem curvatura nula, e temos o requerido.

Então, podemos supor que H∩ conv(X) = {p}. Suponha, por absurdo, que a curvatura

de X0 em p é positiva. Então existe uma esfera S em TpM a qual passa em p e contém

conv(X) no interior da bola cuja fronteira é S.

Seja S = expp(S) e note que X está contido no interior da região compacta limitada

por S em M. Note que como a derivada covariante depende somente das primeiras

derivadas da métrica temos que a segunda forma fundamental de S e S coincidem em

p. Em particular S tem curvatura positiva no fecho de uma vizinhança U de p, pois S

tem curvatura positiva em p.

Seja Sε a hipersuperfície paralela interior de S a uma distância ε e Uε a imagem de

U em Sε. Então p ̸∈ Sε, mas podemos escolher ε > 0 pequeno de modo a termos que

X ⊂ Sε, Uε tem curvatura positiva e Sε intersecta conv(X) somente nos pontos de Uε.

Seja Y a intersecção da região compacta limitada por Sε com conv(X). Então o interior

de Y é um conjunto localmente convexo em M. Consequentemente, por [CG72, Teorema

1.6, p. 418] temos que Y é uma subvariedade mergulhada com fronteira de M; além
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disso, Y possui um elemento de suporte local em todo ponto da fronteira. Portanto, por

[Ale78, Proposição 1, p. 285] temos que Y é convexo.

Assim, construímos um conjunto fechado e convexo de M que contém X mas não

contém p, o que nos dá a contradição desejada, pois p ∈ conv(X).

Definição 3.88. Sejam (M, g) uma variedade Riemanniana e X ⊂ M um subconjunto convexo

de M. Dizemos que o segmento de geodésica α : [0, a] → M é perpendicular ao conjunto

X se α(0) ∈ ∂X e ⟨α′(0), x− α(0)⟩ ≤ 0 para todo x ∈ Tα(0)X. Dizemos que α′(0) é o normal

para fora de X em α(0).

Lema 3.89. Sejam (M, g) uma variedade de Cartan-Hadamard e X ⊂ M um subconjunto

convexo de M. Então os segmentos de geodésica que são perpendiculares a X em pontos distintos

nunca se intersectam.

Demonstração. A demonstração pode ser vista em [BO69, Lema 3.2 item 1, p. 7].

Definição 3.90. Sejam (M, g) uma variedade Riemanniana, Γ ⊂ M uma hipersuperfície

mergulhada em M, p ∈ Γ um ponto de Γ e ν ∈ TpM o normal para fora de Γ em p. Definimos

pε
ν = expp(εν).

Denote por Γε a hipersuperfície paralela exterior de Γ a uma distância ε.

Lema 3.91. Sejam (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

convexa de M que limita um domínio Ω. Considere p ∈ Γ, ν o normal para fora de Γ em p e

suponha que pε é um ponto duas vezes diferenciável da hipersuperfície paralela exterior Γε, para

ε ≥ 0. Então pε é um ponto duas vezes diferenciável de Γε para todo ε > 0. As curvaturas

principais de Γε em pε podem ser indexadas para que as aplicações ε 7→ κi(pε) sejam de classe C1

em ]0, ∞[. Além disso, se p é um ponto duas vezes diferenciável de Γ, então ε 7→ κi(pε) são de

classe C1 em [0, ∞[.

Demonstração. Seja I =]0, ∞[ e suponha que pε é um ponto duas vezes diferenciável

de Γε, para algum ε ∈ I fixado. Então podemos construir via coordenadas normais e

[FS06, Lema 4.1, p. 211] um par de hipersuperfícies S± de classe C2 em M que passam

por pε, estão contidas cada uma em um lado de Γε e têm o mesmo operador forma que

Γε em pε,

SS+(pε) = SΓε(pε) = SS−(pε). (123)

Como S± são de classe C2, suas respectivas funções distâncias são de classe C2 em uma

vizinhança aberta de pε, pelo Lema 3.19. Sejam Sδ
± as hipersuperfícies paralelas de S±
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com distância δ ≥ −ε. Se δ > 0 consideramos Sδ
± as hipersuperfícies paralelas exteriores,

isto é, estas hipersuperfícies estão no lado onde o normal para fora de Γε aponta. Por

outro lado, se δ < 0, consideramos Sδ
± as hipersuperfícies paralelas interiores, como

ilustram as Figuras 10 e 11.

Figura 10: Hipersuperfícies Sδ
± para δ > 0. Figura 11: Hipersuperfícies Sδ

± para δ < 0.

Assim, como as funções distância de S± são de classe C2 em uma vizinhança de S±,

segue-se que Sδ
± são de classe C2 para δ suficientemente próximo a 0. Além disso, pela

equação de Ricatti para os operadores forma de Sδ
± [Gra00, Corolário 3.3, p. 34], temos

que SSδ
±

são determinados pelas condições iniciais SS± . Então de (123) temos que

SSδ
+
(pε+δ) = SSδ

−
(pε+δ).

Disto temos que pε+δ é um ponto duas vezes diferenciável de Γε+δ para δ suficientemente

pequeno, pois Γε+δ tem hipersuperfícies suporte Sδ
± em cada lado de pε+δ e ε 7→ SΓε(pε)

é de classe C1.

Por outro lado, como o operador forma é auto-adjunto, segue-se de [Kat80, Teorema

6.8, Capítulo 2, p. 122] que seus auto-valores podem ser indexados e então eles são

funções de classe C1 de ε.

Note que do exposto acima temos que o conjunto A ⊂ I de distâncias ε para as quais

pε é um ponto duas vezes diferenciável de Γε e as curvaturas principais de Γε em pε

podem ser indexadas para que as aplicações ε 7→ κi(pε) sejam de classe C1 em I é um

conjunto aberto. Assim, basta mostrarmos que A também é fechado e concluímos esta

primeira parte do Lema.

Para mostrarmos que A ⊂ I é fechado considere pεi pontos duas vezes diferenciáveis

de Γεi para uma sequência εi ∈ A convergindo para ε ∈ I. Se ε = 0, então temos que
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ε ∈ A, pois pelo argumentado acima [ε, ε + δ[⊂ A para algum δ e temos o requerido.

Suponha então que ε > 0.

Note que as curvaturas principais de Γεi são uniformemente limitadas superiormente,

pois uma bola de raio ε
2 rola livremente dentro de Γεi , para i suficientemente grande.

Notem também que as curvaturas principais de Γεi são limitadas inferiormente, pois Γεi

são convexos. Considere, assim, (S±)i um par de hipersuperfícies de classe C2 que são

suporte para Γεi , para cada i, como descritas acima. Por (123) temos que as curvaturas

de (S±)i são uniformemente limitadas. Então existe δ > 0 independente de i tal que as

funções distância de cada (S±)i são de classe C2 em uma δ-vizinhança de pεi . Escolha i

suficientemente grande para termos |εi − ε| < δ.

Disto temos que existem hipersuperfícies paralelas S± que são de classe C2 e são

suporte para Γε numa vizinhança de pε. Portanto, pε é um ponto duas vezes diferenciável

de Γε. Donde temos que ε 7→ SΓε(pε) é de classe C1 e pelo mesmo argumento temos

que as curvaturas principais de Γε em pε podem ser indexadas para que as aplicações

ε 7→ κi(pε) sejam de classe C1 em I.

Com o exposto acima temos que ε ∈ A e, portanto, A é fechado. Para mostrarmos a

segunda parte, isto é, se p é um ponto duas vezes diferenciável de Γ, então ε 7→ κi(pε)

são de classe C1 em [0, ∞[, basta tomarmos acima I = [0, ∞[ e o resultado segue-se

analogamente.

Proposição 3.92. Sejam (M, g) uma variedade de Cartan-Hadamard e X ⊂ M um subconjunto

compacto de M. Suponha que conv(X) tem interior não vazio e existe uma vizinhança aberta U

de X0 = ∂conv(X) em M tal que X ∩U é uma hipersuperfície de classe C1,1. Então

G(X ∩ X0) = G(X0).

Demonstração. Primeiramente, seja A ⊂ X0 um subconjunto de X0, definimos Aε como

a coleção de todos os pontos pε
ν = expp(εν) tais que p ∈ A e ν é o normal para fora de

X0 em p. Então, pelo Lema 3.89, temos que

G(Xε
0) = G((X0 \ X)ε) + G((X0 ∩ X)ε).

Note que quando ε → 0 temos que G(Xε
0) → G(X0), pela Definição 3.77. Então para

completar a prova é suficiente mostrar que, quando ε→ 0,

G((X0 \ X)ε)→ 0 e G((X0 ∩ X)ε)→ G(X0 ∩ X).
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Vamos mostrar que G((X0 \ X)ε) → 0. Para isto, fixe ε > 0 e considere p = pε, e para

todo ε ∈ [0, ε] seja

rε : Xε
0 → Xε

0

a projeção p 7→ pε. Note que rε é uma aplicação Lipschitz, pois Xε
0 é um conjunto

convexo para todo ε no domínio da aplicação, além disso, pε = rε(p). Considere

J(ε) = Jacp(rε). Então, para todo ε ∈ [0, ε],

G((X0 \ X)ε) =
∫

p∈(X0\X)ε
GK(ε)J(ε)dσ. (124)

onde GK(ε) = GKXε
0
(pε). Para mostrarmos que G((X0 \ X)ε) → 0 é suficiente mostrar,

pelo Teorema da convergência dominada, que para quase todo p ∈ (X0 \ X)ε,

1. GK(ε)J(ε) ≤ C, para 0 < ε ≤ ε, e

2. GK(ε)J(ε)→ 0, quando ε→ 0.

Para provarmos (1) note que por [Gra00, Teorema 3.11, p. 39] temos que

J′(ε) = (n− 1)H(ε)J(ε), (125)

onde H(ε) = HXε
0
(pε) ≥ 0 é a curvatura média de Xε

0 em pε. Indexemos as curvaturas

principais κi(ε) = κi(pε) de Xε
0 em pε como no Lema 3.91. Por [Gra00, Corolário 3.5, p.

36], se κi(ε) são distintos, temos que

κ′i(ε) = −κ2
i (ε)− Rnini(ε), (126)

onde Rnini(ε) denota a curvatura seccional de M em pε, com respeito ao plano gerado

pelas direções principais de Xε
0 e seu vetor normal. De (126) segue-se que

GK′(ε) =
(

Πn−1
i=1 κi(ε)

)′
=

n−1

∑
j=1

κ′j(ε)Πi ̸=jκi(ε)

=
n−1

∑
j=1

(
−κ2

j (ε)− Rnjnj(ε)
)

Πi ̸=jκi(ε)

=
n−1

∑
j=1

(
−κj(ε)GK(ε)− Rnjnj(ε)

GK(ε)
κj(ε)

)

= −(n− 1)H(ε)GK(ε)−
n−1

∑
j=1

Rnjnj(ε)
GK(ε)
κj(ε)

. (127)



130 uma fórmula de comparação para a curvatura total do envoltório convexo

Como Xε
0 é convexo temos que sua segunda forma fundamental é positiva semi-definida

e, portanto, GK(ε)
κj(ε) ≥ 0, 1 ≤ j ≤ n − 1. Por outro lado, como a variedade M é uma

variedade de Cartan-Hadamard temos que Rnjnj(ε) ≤ 0, 1 ≤ j ≤ n− 1. Logo, de (127),

temos que

GK′(ε) = −(n− 1)H(ε)GK(ε)−
n−1

∑
j=1

Rnjnj(ε)
GK(ε)
κj(ε)

≥ −(n− 1)H(ε)GK(ε). (128)

Como (128) vale quando κi(ε) são distintos, e GK(ε) e H(ε) são de classe C1, pelo Lema

3.91, temos que (128) vale em geral. Então temos por (128) e (125) que

(GK(ε)J(ε))′ = GK′(ε)J(ε) + GK(ε)J′(ε)

≥ −(n− 1)H(ε)GK(ε)J(ε) + (n− 1)H(ε)GK(ε)J(ε) = 0. (129)

Integrando-se (129) entre ε e ε e utilizando-se o Teorema fundamental do cálculo

obtemos que ∫ ε

ε
(GK(t)J(t))′dt ≥ 0

GK(ε)J(ε)− GK(ε)J(ε) ≥ 0

GK(ε)J(ε) ≤ GK(ε)J(ε). (130)

Note que J(ε) = 1, pois rε é a aplicação identidade. Além disso, a segunda forma

fundamental de Xε
0 é limitada superiormente, pois Xε

0 é convexo e portanto tem suporte

por baixo por bolas de raio ε em cada ponto, portanto, GK(ε) é uniformemente limitado

superiormente. Logo, de (130), temos, para 0 < ε ≤ ε, que

GK(ε)J(ε) ≤ GK(ε)J(ε) = GK(ε) ≤ C. (131)

Para obtermos (2) considere p um ponto duas vezes diferenciável de (X0 \X)ε. Pelo Lema

3.91 temos que pε é um ponto duas vezes diferenciável de (X0 \ X)ε para todo ε ∈]0, ε].

Denote por κi(ε) as curvaturas principais de (X0 \ X)ε em pε e também GKi(ε) = GK(ε)
κi(ε) .

Então usando (128) e (126) temos

GK′i(ε) =
(
Πj ̸=iκj(ε)

)′
= ∑

l ̸=i
κ′l(ε)Πj ̸=i,j ̸=lκj(ε)

= ∑
l ̸=i

(
−κ2

l (ε)− Rnlnl(ε)
)

Πj ̸=i,j ̸=lκj(ε)
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= ∑
l ̸=i

(
−κl(ε)GKi(ε)− Rnlnl

GKi(ε)
κl(ε)

)
= − ((n− 1)H(ε)− κi(ε)) GKi(ε)−∑

l ̸=i
Rnlnl

GKi(ε)
κl(ε)

= −(n− 1)H(ε)GKi(ε) + GK(ε)−∑
l ̸=i

Rnlnl
GKi(ε)
κl(ε)

. (132)

Como Xε
0 é convexo temos que sua segunda forma fundamental é positiva semi-definida

e, portanto, GK(ε) ≥ 0 e GK(ε)
κl(ε) ≥ 0, l ̸= i. Por outro lado, como a variedade M é uma

variedade de Cartan-Hadamard temos que Rnlnl(ε) ≤ 0, l ̸= i. Logo, de (132), temos que

GK′i(ε) = −(n− 1)H(ε)GKi(ε) + GK(ε)−∑
l ̸=i

Rnlnl
GKi(ε)
κl(ε)

≥ −(n− 1)H(ε)GKi(ε). (133)

Logo, de (125) e (133) temos que

(GKi(ε)J(ε))′ = GK′i(ε)J(ε) + GKi(ε)J′(ε)

≥ −(n− 1)H(ε)GKi(ε)J(ε) + (n− 1)H(ε)GKi(ε)J(ε) = 0. (134)

Integrando-se (134) entre ε e ε e utilizando-se o Teorema fundamental do cálculo

obtemos que ∫ ε

ε
(GKi(t)J(t))′dt ≥ 0

GKi(ε)J(ε)− GKi(ε)J(ε) ≥ 0

GKi(ε)J(ε) ≤ GKi(ε)J(ε). (135)

Note que J(ε) ≤ 1, pois em variedades de Cartan-Hadamard a projeção sobre conjuntos

convexos é não-expansível por [BH99, Corolário 2.5, item (2), p. 178]. Além disso,

a segunda forma fundamental de Xε
0 é limitada superiormente, pois Xε

0 é convexo e

portanto tem suporte por baixo por bolas de raio ε em cada ponto, portanto, GKi(ε) é

uniformemente limitado superiormente. Logo, de (135), temos, para 0 < ε ≤ ε, que

GKi(ε)J(ε) ≤ GKi(ε)J(ε) ≤ GKi(ε) ≤ C. (136)

De (136) segue-se que

GK(ε)J(ε) ≤ Cκi(ε)

para todo 0 ≤ i ≤ n − 1. Em particular, se infi κi(ε) → 0 quando ε → 0, então

GK(ε)J(ε)→ 0 e obtemos (2).
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Resta mostrar que infi κi(ε) → 0 quando ε → 0. Para provarmos isto considere S

uma superfície positivamente curvada com fronteira que contém p em seu interior, é

ortogonal ao normal para fora ν de X0 em p expp(εν) = p, e seu vetor de curvatura média

paralelo a −ν. Note que podemos contruir S tomando-se uma vizinhança da imagem

sob a aplicação exponencial de uma esfera em TpM de raio suficientemente grande que

passa por p e é ortogonal a ν. Em particular note que as curvaturas principais de S

podem ser arbitrariamente pequenas.

Agora note que S está contida no interior de conv(X). Suponha, por absurdo que não,

neste caso contrário, podemos substituir S por uma superfície com curvatura menor,

assim, teríamos que ∂S é disjunto de conv(X). Deste modo, procedendo como no Lema

3.87, podemos tomar uma superfície paralela interior a S ao longo de −ν por uma

distância δ suficientemente pequena de modo a podermos substituir conv(X) por um

conjunto convexo menor contendo X, o que não é possível.

Considere Sε a hipersuperfície paralela exterior de S. Para ε pequeno, Sε permanece

positivamente curvada, pela continuidade da curvatura. Além disso, como S sempre

tem um ponto no interior de conv(X), segue-se que Sε sempre tem um ponto no interior

do conjunto limitado por Xε
0. Consequentemente infi κi(ε) não pode ser maior que

todas as curvaturas principais de Sε em pε, pois Sε é suporte em cada ponto. Mas as

curvaturas principais de S podem ser tomadas arbitrariamente pequenas. Então as

curvaturas principais de Sε podem ser tomadas arbitrariamente pequenas também, para

ε suficientemente pequeno. Portanto infi κi(ε) → 0 quando ε → 0, o que completa a

prova de (2).

Nos resta mostrar que G((X0 ∩ X)ε) → G(X0 ∩ X). Mas para isto basta notar que

GK(ε)J(ε) → GK(0)J(0) pelo Lema 3.91; com o item (1) e o Teorema da convergência

dominada segue-se o requerido.

Definição 3.93. Sejam (M, g) uma variedade Riemanniana e Γ ⊂ M uma hipersuperfície

fechada, mergulhada de M e de classe C1,1. Definimos a curvatura total positiva de Γ como

G+(Γ) =
∫

Γ+

GKdσ,

onde Γ+ ⊂ Γ é a região onde GK ≥ 0.

Corolário 3.94. Sejam (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

fechada, mergulhada de M e de classe C1,1. Então

G+(Γ) ≥ G(Γ0).
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Demonstração. Primeiramente note que G+(Γ) ≥ G+(Γ ∩ Γ0). Além disso, como Γ tem

suporte Γ0 por cima, GKΓ(p) ≥ GKΓ0(p) ≥ 0 para todos os pontos p ∈ Γ∩ Γ0 duas vezes

diferenciáveis. Consequentemente, G+(Γ∩ Γ0) = G(Γ∩ Γ0). Por fim, pela Proposição 3.92,

temos que G(Γ∩ Γ0) = G(Γ0), o que completa a demonstração.





4 A D E S I G U A L D A D E
I S O P E R I M É T R I C A

Teorema 4.1. Sejam (M, g) uma variedade de Cartan-Hadamard e Γ ⊂ M uma hipersuperfície

mergulhada de M. Suponha que vale a desigualdade

G(Γ) ≥ vol(Sn−1), (137)

onde vol é o volume e Sn−1 é a esfera unitária de Rn. Então, para Ω ⊂ M um conjunto limitado

de M, vale a desigualdade isoperimétrica

per(Ω)n ≥ per(Bn)n

vol(Bn)n−1 vol(Ω)n−1, (138)

onde per é o perímetro e Bn é a bola unitária de Rn. E vale a igualdade somente para bolas

euclideanas.

Definição 4.2. Sejam (M, g) uma variedade Riemanniana e U ⊂ M um subconjunto aberto de

M. Definimos o perfil isoperimétrico de U como a função IU : [0, vol(U)[→ R dada por

IU(v) = inf{per(Ω) : Ω ⊂ U, vol(Ω) = v, diam(Ω) < ∞},

onde diam é o diâmetro, vol a medida de Lebesgue, per o perímetro e IU(0) = 0.

Note que para provar (138) é suficiente provar que

IM ≥ IRn ,

para uma variedade de Cartan-Hadamard M. De fato, seja v < ∞ e considere Ω ⊂ M

um conjunto aberto de M tal que vol(Ω) = v, diam(Ω) < ∞ e IM(v) = per(Ω). Considere

também D ⊂ Rn um conjunto aberto de Rn tal que vol(D) = v, diam(D) < ∞ e

IRn(v) = per(D). Da hipótese temos que per(Ω) ≥ per(D). Do problema isoperimétrico

em Rn temos que existe Bn tal que vol(Bn) = v e per(D) ≥ per(Bn). Portanto, temos que

per(Ω) ≥ per(Bn), donde segue-se o requerido. Note também que é suficiente mostrar

que IB ≥ IRn para uma família de bolas geodésicas abertas B ⊂ M cujo raio cresce

arbitrariamente e eventualmente cobre um conjunto limitado Ω ⊂ M.

135
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Definição 4.3. Sejam (M, g) uma variedade Riemanniana e B ⊂ M uma bola geodésica de M.

Dizemos que Ω ⊂ B é uma região isoperimétrica de M se Ω tem o menor perímetro dado um

volume, ou satisfaz per(Ω) = IB(vol(Ω).

Lema 4.4. Sejam (M, g) uma variedade de Cartan-Hadamard e B ⊂ M uma bola geodésica

aberta. Então, para v ∈]0, vol(B)[, existe uma região isoperimétrica Ω ⊂ B com vol(Ω) = v.

Seja Γ = ∂Ω, H a curvatura média normalizada de Γ (sempre que esta estiver definida) e

Γ0 = ∂conv(Γ). Então

1. Γ∩ B é de classe C∞ a menos do cunjunto fechado sing(Γ) de dimensão de Haussdorf no

máximo n− 8. Além disso, H ≡ H0 = H0(v) é constante em (Γ∩ B) \ sing(Γ).

2. Γ é de classe C1,1 dentro de uma vizinhança aberta U de ∂B em M. Além disso, H ≤ H0

em quase todo ponto de U ∩ Γ.

3. d(sing(Γ), Γ0) ≥ ε0 > 0.

Em particular, Γ é de classe C1,1 dentro de uma vizinhança aberta de Γ0 em M.

Demonstração. (1) Segue de [GMT83, Teorema 2, p. 29].

(2) Segue de [Str97, Teorema 3.6, p. 659].

(3) Primeiramente note que sing(Γ) é um conjunto fechado pelo item (1) do Lema 4.4.

Além disso, temos que sing(Γ) ⊂ B pelo item (2) do Lema 4.4. Então é suficiente mostrar

que os pontos p ∈ Γ ∩ Γ0 ∩ B são não singulares. Esse é o caso, pois TpΓ ⊂ Tpconv(Γ)

pelo Lema 3.82, que é um subconjunto convexo de TpM, pelo Lema 3.82. Portanto, TpΓ

está contido em um semiespaço de TpM gerado por qualquer hiperplano de Tpconv(Γ)

em p. Disso temos que TpΓ é um hiperplano por [Sim83, Corolário 37.6, p. 220].

Consequentemente, Γ será de classe C∞ em uma vizinhança de p por [Mor03, Proposição

3.5, p. 5046].

Seja Ω ⊂ B a região isoperimétrica de volume v dada pelo Lema 4.4. Pela Proposição

3.92 temos que G(Γ0) = G(Γ ∩ Γ0). De (137) e da Definição 3.77 podemos aplicar o

Corolário 3.74 e obtemos que G(Γ0) ≥ nωn. Então temos que

nωn ≤ G(Γ0) = G(Γ∩ Γ0) =
∫

Γ∩Γ0

GKdσ, (139)

onde GK denota a curvatura de Gauss-Kronecker de Γ. Note que GK ≥ 0 em Γ ∩ Γ0,

pois todos os pontos de Γ∩ Γ0 são localmente convexos. Além disso, pela desigualdade
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geométrica-aritmética temos que GK ≤ Hn−1 em Γ∩ Γ0. Então, por (139) e pelo Lema

4.4, temos que

nωn ≤
∫

Γ∩Γ0

GKdσ

≤
∫

Γ∩Γ0

Hn−1dσ

=
∫

Γ∩Γ0∩∂B
Hn−1dσ +

∫
Γ∩Γ0∩B

Hn−1dσ

=
∫

Γ∩Γ0∩∂B
Hn−1dσ +

∫
Γ∩Γ0∩B

Hn−1
0 dσ

≤
∫

Γ∩Γ0∩∂B
Hn−1

0 dσ +
∫

Γ∩Γ0∩B
Hn−1

0 dσ

≤
∫

Γ∩∂B
Hn−1

0 dσ +
∫

Γ∩B
Hn−1

0 dσ

= Hn−1
0 per(Ω). (140)

Consequentemente segue-se que

H0(vol(Ω)) ≥
(

nωn

per(Ω)

) 1
n−1

= H0(per(Ω)), (141)

onde H0(a) é a curvatura média de uma bola de perímetro a em Rn. Por [Rit17, Teorema

3.2, p. 248] temos que IB é contínua e não-decrescente e, portanto, pelo Teorema

de Lebesgue sobre diferenciação de funções monotônicas [RSN56, Teorema 1, p. 5],

IB é diferenciável em quase todo ponto. Além disso, por [Hsi92, Lema 4, p. 170]

I ′B(v) = (n− 1)H0(v) em todos os pontos de diferenciabilidade v ∈]0, vol(B)[. Então, por

(141), temos, em quase todo ponto de [0, vol(B)], que

I ′B(v) = (n− 1)H0(v) ≥ (n− 1)H0(v) = I ′Rn(v). (142)

Consequentemente, integrando-se (142) entre 0 e v e utilizando-se o Teorema funda-

mental do cálculo obtemos que,∫ v

0
I ′B(t)dt ≥

∫ v

0
I ′Rn(t)dt

IB(v)− IB(0) ≥ IRn(v)− IRn(0)

IB(v) ≥ IRn(v), (143)

para todo v ∈ [0, vol(B)[, como desejado. Assim, estabelecemos (137) para variedades

de Cartan-Hadamard. Nos resta mostrar que a igualdade vale em (137) somente para

bolas Euclideanas.
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Lema 4.5. Seja (M, g) uma variedade de Cartan-Hadamard e Ω ⊂ M um subconjunto limitado

de M tal que vale a igualdade na inequação (138). Então Γ é estritamente convexa, de classe C∞

e tem curvatura média constante H0. Além disso, as curvaturas principais de Γ são todas iguais

a H0.

Demonstração. Se vale a igualdade na inequação (138) então vale a igualdade na inequa-

ção (143) para alguma bola B ⊂ M grande o suficiente para conter Ω e vol(Ω) = v. Isso,

por sua vez faz com que valha a igualdade nas inequações (141) e (140). Note que da

igualdade em (140) temos, em particular, que∫
Γ∩Γ0

Hn−1dσ =
∫

Γ∩∂B
Hn−1

0 dσ +
∫

Γ∩B
Hn−1

0 dσ. (144)

Como H0 ≥ 0 e H ≥ 0 nos respectivos domínios temos, de (144), que

Hn−1(Γ \ Γ0) = 0. (145)

Assim, por (145), temos que

Γ = Γ0. (146)

Como ilustram as Figuras 13 e 12.

Figura 12: Em roxo a área de integração do

lado esquerdo de (144)

Figura 13: Em laranja e verde as áreas de inte-

gração do lado direito de (144)

Note também da igualdade em (140) temos que∫
Γ∩Γ0∩∂B

Hn−1dσ +
∫

Γ∩Γ0∩B
Hn−1

0 dσ =
∫

Γ∩Γ0∩∂B
Hn−1

0 dσ +
∫

Γ∩Γ0∩B
Hn−1

0 dσ∫
Γ∩Γ0∩∂B

Hn−1dσ =
∫

Γ∩Γ0∩B
Hn−1

0 dσ. (147)
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Logo, de (147), temos que

Hn−1 = Hn−1
0 , (148)

em (Γ∩ B) \ sing(Γ). Novamente pela igualdade em (140) temos que∫
Γ∩Γ0

GKdσ =
∫

Γ∩Γ0

Hn−1dσ. (149)

Logo, de (148) e (149) temos que

GK = Hn−1 = Hn−1
0 . (150)

em (Γ∩ B) \ sing(Γ).

Por (146), Γ é convexa. Afirmamos que para todo ponto p ∈ Γ ∩ B, TpΓ é um

hiperplano. De fato TpΓ ⊂ Tpconv(Γ) pelo Lema 3.82, que é um subconjunto convexo de

TpM, pelo Lema 3.82. Portanto, TpΓ está contido em um semiespaço de TpM gerado

por qualquer hiperplano de Tpconv(Γ) em p. Disso temos que TpΓ é um hiperplano por

[Sim83, Corolário 37.6, p. 220].

Assim, Γ∩ B é de classe C∞. Por outro lado, pelo Lema 4.4 item (2), próximo a ∂B, Γ

é localmente o gráfico de uma função de classe C1,1 e, então, todo ponto de Γ tem um

normal unitário que é Hölder contínua, isto é, para n(p) e n(q) vetores normais a Γ em

p e q, respectivamente, tem-se que |n(p)− n(q)| ≤ C|p− q|α, onde C > 0 e 0 < α ≤ 1.

Além disso, Γ tem Hn−1 em quase todo ponto curvatura média H0, por (145). Disso

segue-se que Γ é de classe C∞ em uma vizinhança de ∂B. Por fim, por (150) implica que

todas as curvaturas principais de Γ são iguais a H0 em todos os pontos.

Definição 4.6. Sejam (M, d) um espaço métrico e X, Y ⊂ M dois subconjuntos não-vazios de

M. Definimos a distância de Hausdorff de X e Y por

dH(X, Y) = max

{
sup
x∈X

dY(x), sup
y∈Y

dX(y)

}
.

Lema 4.7. Sejam (M, g) uma variedade de Cartan-Hadamard, Γ ⊂ M uma hipersuperfície

convexa de M e Γi uma sequência de hipersuperfícies convexas de classe C2 que convergem para

Γ com respeito a distância de Hausdorff. Suponha que as curvaturas principais de Γi sejam

limitadas por cima por uma constante uniforme. Então Γ é de classe C1,1.

Demonstração. Seja p ∈ M um ponto de M, Γ = exp−1
p (Γ) e Γi = exp−1

p (Γi). Então Γi

é de classe C2 e suas curvaturas principais são uniformemente limitadas por cima.

Segue-se disso e do Teorema do rolamento de Blaschke [How99, Teorema 1.1, p. 472]
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que uma bola de raio ε rola dentro de Γi. Então uma bola de raio ε rola dentro de Γ, ou

reach(Γ) ≥ 0. Consequentemente, pelo Lema 3.24, Γ é de classe C1,1, donde temos que Γ

é de classe C1,1.

Agora, suponha que valha a igualdade em (138) para alguma região Ω em uma

variedade de Cartan-Hadamard M. Assim vale a igualdade sucessivamente em (141),

(140) e (139). Então temos que G(Γ0) = nωn. Mas, pelo Lema 4.5, temos que Γ é convexo,

ou Γ = Γ0. Então

G(Γ) = nωn. (151)

Seja λ1 = reach(Γ). Note que, pelo Lema 4.5, Γ é de classe C∞. Então, pelo Lema 3.24,

λ1 > 0. Seja u = d∗Γ. Então, pelo Lema 3.19, Γλ = u−1(−λ) será uma hiperfuperfície de

classe C∞ para λ ∈ [0, λ1[.

Para um ponto p ∈ Γ arbitrário, seja pλ o ponto obtido por movermos p a uma

distância λ ao longo da geodésica para dentro ortogonal a Γ em p, e defina Rlnln(λ) =

Rlnln(pλ). Afirmamos que, para λ ∈ [0, λ1],

Rlnln(λ) ≡ 0. (152)

De fato, note que para λ suficientemente pequeno Γλ é positivamente curvado pela

continuidade da curvatura. Seja λ o supremo de x < λ1 tal que Γλ é positivamente

curvada em [0, x[. De (137) temos que G(Γλ) ≥ nωn. Então, por (151) e pelo Corolário

3.74, temos que

0 ≥ nωn − lim
λ→λ
G(Γλ) = G(Γ)− lim

λ→λ
G(Γλ) = −

∫
Ω\Dλ

Rrnrn
GK
κr

dµ ≥ 0,

onde Dλ é o limite das regiões limitadas por Γλ quando λ→ λ. Então Rrnrn(λ) ≡ 0 para

λ < λ. Como Rrnrn(λ) ≡ 0 para λ < λ temos, por [Gra00, Corolário 3.3, p. 34], que

S ′(λ) = S2(λ), (153)

para λ < λ, onde S(λ) é o operador forma de Γλ em pλ. Pelo Lema 4.5 temos que

S(0) = H0 Id, onde Id é a transformação identidade. Então, resolvendo-se (153) obtemos

S ′(λ) = S2(λ)

S ′(λ)
S2(λ)

= 1∫ λ

0

S ′(t)
S2(t)

dt =
∫ λ

0
1dt
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(
− 1
S(t)

)λ

0
= λ

− 1
S(λ)

+
1
S(0)

= λ

1
S(λ)

=
1
S(0)

− λ

S(λ) =
H0

1− λH0
Id. (154)

para λ < λ. De (154) temos que S(λ) = Hλ Id, onde

Hλ =
H0

1− λH0
. (155)

Agora suponha que λ < λ1. Então Γλ será uma hipersuperfície de classe C2 e,

portanto, por continuidade, terá curvatura principal constante Hλ = limλ→λ Hλ. Como

Γλ é uma hipersuperfície fechada, Hλ > 0. Então Γλ tem curvatura positiva, o que não

é possível se λ < λ1. Então concluímos que λ = λ1, o que prova (152).

Agora suponha, por absurdo, que as curvaturas principais de Γλ sejam uniformemente

limitadas superiormente para λ < λ1, então Γλ1 é uma hipersuperfície de classe C1,1 pelo

Lema 4.7, o que não é possível, pois λ1 = reach(Γ). Então algumas curvaturas principais

de Γλ crescem arbitrariamente, quando λ → λ1. Mas Γλ tem curvaturas principais

constantes. Então todas as curvatura principais de Γλ crescem arbitrariamente. Logo,

pela equação de Gauss, todas as curvaturas seccionais de Γλ crescem arbitrariamente.

Consequentemente, pelo Teorema da Bonnet-Myers, o diâmetro de Γλ converge para

zero. Em outras palavras, Γλ colapsa para um ponto, digamos x0, quando λ→ λ1.

Então Γ = ∂Bλ1 ou Ω = Bλ1 , uma bola geodésica de raio λ1 e centro x0. Além disso, a

condição Rlnln = 0 significa que ao longo de cada segmento de geodésica que conecta x0

a ∂Bλ1 a curvatura seccional de M com respeito aos planos tangentes desses segmentos

de geodésica se anula. Então, pelo Lema 3.75, todas as curvaturas seccionais de Bλ1 se

anulam, o que prova o requerido.

4.1 a desigualdade para curvatura total em
dimensões 2 e 3

Começamos obtendo a desigualdade para curvatura total em dimensão 3.
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Sejam (M, g) uma variedade de Cartan-Hadamard 3-dimensional e Γ uma hipersuper-

fície convexa de classe C1,1 em M, isto é, uma subvariedade convexa de M de dimensão

2. Então queremos mostrar que

G(Γ) ≥ vol(S2), (156)

onde S2 denota a esfera unitária de R3 e vol denota seu volume.

Suponha, primeiramente, que Γ é suave e note que vol(S2) = 4π.

Considere KΓ a curvatura seccional de Γ dada pela métrica induzida de M, KM a

curvatura seccional de M e GK a curvatura de Gauss-Kronecker de Γ.

Pelo Teorema de Gauss-Bonnet [Cha06, Teorema V.2.6, p.243] [Pet06, Capítulo 4, seção

3, p.102] temos que ∫
Γ

KΓdσ = 2πX (Γ), (157)

onde dσ é a forma volume de Γ e X (Γ) é a característica de Euler-Poincaré de Γ.

Em nosso caso, como Γ é uma hipersuperfície convexa, isto é, a fronteira de um

conjunto compacto e convexo com pontos interiores, temos que X (Γ) = 2.

Sejam κ1, κ2 as curvaturas principais de Γ com direções principais associadas E1, E2,

respectivamente. Assim, como GK = κ1κ2, temos pela Fórmula de Gauss para uma

hipersuperfície [dC15, Observação 2.6, p. 145] que

KΓ(E1, E2) = KM(E1, E2) + GK. (158)

Logo, de (157) e (158), temos que∫
Γ
(KM + GK)dσ = 4π∫

Γ
GKdσ = 4π −

∫
Γ

KMdσ. (159)

Assim, como KM ≤ 0, de (159) concluímos que

G(Γ) =
∫

Γ
GKdσ = 4π −

∫
Γ

KMdσ ≥ 4π = vol(S2).

Para provarmos o caso em que Γ é de classe C1,1, aplicamos a técnica feita na demons-

tração do Teorema 3.69 que consiste em considerar Γ como conjunto de nível da função

distância com sinal e na suavização desta função.

Agora obteremos a desigualdade para curvatura total em dimensão 2.
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Sejam (M, g) uma variedade de Cartan-Hadamard 2-dimensional e Γ uma hipersuper-

fície convexa de classe C1,1 em M, isto é, uma subvariedade convexa de M de dimensão

1. Então queremos mostrar que

G(Γ) ≥ vol(S1), (160)

onde S1 denota o disco unitário de R2 e vol denota seu volume.

Suponha, primeiramente, que Γ é suave e note que vol(S1) = 2π.

Considere KΓ a curvatura de Γ e KM a curvatura seccional de M.

Para o caso particular em que M = R2 temos pelo Teorema de Fenchel [dC14, Teorema

3, p. 480] que ∫
Γ

KΓds ≥ 2π.

Assim, por uma extensão do Teorema de Fenchel para variedades de Cartan-Hadamard

[BcH74, Teorema 2, p. 185], temos que∫
Γ

KΓds ≥ 2π −
∫

T
KMdA, (161)

onde T é um tubo sobre Γ de raio suficientemente pequeno para não termos auto-

intersecções. Assim, como KM ≤ 0, de (161) concluímos que

G(Γ) =
∫

Γ
KΓds ≥ 2π −

∫
T

KMdA ≥ 2π = vol(S1).

Para provarmos o caso em que Γ é de classe C1,1, aplicamos a técnica feita na demons-

tração do Teorema 3.69 que consiste em considerar Γ como conjunto de nível da função

distância com sinal e na suavização desta função.
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